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1. ВВЕДЕНИЕ

Структурное описание геофизических по-
лей всегда привлекало и продолжает привлекать 
большое внимание. Их изучению посвящены 
многие теоретические и экспериментальные ра-
боты [Blackwelder, 1987; Groesen, 1996; Должан-
ский, 2011; Рабинович и др., 1998; Vallis, 2017]. 
В работах [Кляцкин, 2014; Якушкин, 2023; 
Yakushkin, 2023] было отмечено сходство струк-
тур в геофизических полях различной природы, 
включая оптику и гидродинамику, но связь эта 
не была раскрыта с достаточной полнотой. Воз-
вращаясь к этому вопросу, остановимся, в пер-
вую очередь, на описании структур в течениях 
при больших числах Рейнольдса, когда справед-
ливы уравнения идеальной жидкости. Предпо-
ложение о сходстве этих уравнений с уравнени-
ями оптики представляется естественным, так 
как и в том и в другом случае в основе описания 
лежат уравнения Гамильтона [Гончаров, 2008]. 

Более простыми для анализа являются 
структуры в баротропных течениях. Такие 
структуры интересны в связи с развитием ин-
тенсивных вихрей и турбулентности в нижних 
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слоях атмосферы [Jimenez, 2018; Агафонцев  
и др., 2022]. Интенсивные вихревые структуры, 
для которых поле скорости удовлетворяет нера-
венству gH V C 

2 2  (где H  — толщина слоя, 
V  — скорость течения, C  — скорость звука) мо-
гут быть описаны как течения баротропной 
несжимаемой жидкости. Кроме того, их теоре-
тическое изучение необходимо для интерпрета-
ции многочисленных лабораторных экспери-
ментов, в том числе тех, которые велись  
и ведутся в ИФА им. А.М. Обухова [Должанский 
и др., 1990]. Такие структуры генерируются  
в замкнутых сосудах с помощью сторонней 
силы и создают многочисленные регулярные  
и стохастические режимы. Для полного их опи-
сания необходимо обращение к уравнениям 
вязкой жидкости, однако и анализ идеальных 
вихревых течений дает много информации. На-
стоящая работа посвящена обоснованию подхо-
да к описанию течений баротропной несжимае-
мой жидкости, основанного на приближении 
близком геометрической оптике. В разделе  2 
развивается общий подход к решению трехмер-
ных задач. В  разделе 3 более подробно рассма-
триваются двумерные течения. В заключении 
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обсуждается возможность подобного описания 
бароклинных течений.

2. ЛАГРАНЖЕВЫ СТРУКТУРЫ  
В БАРОТРОПНЫХ ТЕЧЕНИЯХ

При описании структур в течениях идеальной 
жидкости удобно использовать понятие лагран-
жева инварианта [Якушкин, 2005]. Эти величины 
выражаются через начальные значения коорди-
наты точки на траектории точек и сохраняют на 
ней свое значение. Из этих инвариантов один 
определяет поверхность, на которой лежит тра-
ектория, второй положение траектории на этой 
поверхности, а третий положение точки на тра-
ектории. Таким образом, течение включает дви-
жение по лагранжевой траектории и движение 
самих траекторий. Эти величины связаны с пере-
менными Клебша, которые используются в урав-
нениях Гамильтона. Они создают систему коор-
динат, в которой могут быть записаны эти 
уравнения. Для поля скорости V r( ), через инва-
рианты hi  имеем [Якушкин, 2005]

V u S ii i= = −( ), 1 3

			   S hi i= ∇ .	 (1)

Коэффициенты ui  в баротропном случае 
также являются лагранжевыми инвариантами. 
Поле завихренности записывается как

Ω = ∇ × ui iS .                            (2)
Лагранжевым инвариантом является вели-

чина [Якушкин, 2005]:

N hi= ∇( )Ω .                             (3)

Образование структур происходит около точ-
ки полного или частичного равновесия течений. 
В баротропной жидкости положение точек рав-
новесия зависит от соотношения между полем 
скорости и полями его завихренности. Для таких 
течений точка равновесия определяется условием:

rot rotV V×[ ] = 0                         (4)

Оно обобщает более простое условие V = 0. 
Для простейших структур оно принимает вид:

V V×[ ] = ∇rot U ,,                        (5)

где U  — произвольная функция.
Равновесными являются и составные струк-

туры, для которых выполняется дополнитель-
ное условие:

V V V V1 2 2 1= =rot rot� �, .                        (6)

На языке лагранжевых инвариантов, образу-
ющих ортогональную систему координат, такие 
течения могут быть представлен как:

1. Течение типа струи

V = ( )∇ = ∇ × ∇ v h h h v h1 2 3 3� �,Ω .

2. Течение типа вихря

V = ( )∇ + ( )∇ = ( )∇v h h v h h F h h h1 1 2 2 2 1 1 2 3� �,Ω .

Кроме простых структур могут существо-
вать и их комбинации в виде спирального вихря  
с согласованными значениями скорости и за-
вихренности. Отклонения от условия равно-
весия вызывают появление квазиравновесных 
структур. Уравнение траекторий на Лагранже-
вом языке имеет вид:

d

dt
hi

R V= ( ).

Тензор dR dhi j/  указывает локальные свой-
ства вихревой трубки на лагражевой траекто-
рии, в том числе ее толщину. Тем самым локаль-
ная форма вихревого поля зависит от 
лагранжевых инвариантов, но их система теряет 
ортогональность, а компоненты поля скорости 
приобретают дивергенцию. Это требует введе-
ния дополнительной компоненты в поле скоро-
сти в виде:

V S= = ∇ + ∇ + ∇ = + ∂
∂

u h h u
hi i i i

i

λ λ θ λ θ
1 1 2 2 � �, .

Связь поля завихренности с полем скорости 
задается уравнением Пуассона для скалярного 
или векторного потенциала. Тем самым задача 
имеет сходство с задачей электростатики, где 
завихренность играет роль источников поля. 
Решение этого уравнения выражается в инте-
гральной форме с помощью функции Грина или 
с помощью разложения Фурье. Эти решения 
сводят задачу описания эволюции поля скоро-
сти к системе нелинейных уравнений с боль-
шим числом переменных. Вместе с тем возмож-
ны решения задачи, имеющие простую форму, 
основанную на разложении по малому пара-
метру, каким является отношение двух разных 
масштабов. Так мы получаем траектории ла-
гранжевых инвариантов, формирующих струк-
туру течения. Простейшими являются струк-
туры, локализованные в области с постоянной 
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завихренностью, граница которых представляет 
собой лагранжев инвариант. Вне завихренной 
области поле потенциала удовлетворяет урав-
нению Лапласа с условиями на границе. Такие 
и  сходные с ними структуры рассмотрены в 
работах Ф. В. Должанского [Должанский и др., 
2002], Н. Н. Романовой [Romanova and Annenkov, 
2005] и других исследователей. Этот подход ис-
пользует частные решения уравнения Пуассона.

В более общем случае имеем уравнение для 
векторного потенциала A:

∆ =A Ω.
Используя (3), представим завихренность ба-

ротропного течения 1 в виде:

Ω Ω= ( ) =
∇ ( )

∇( )
kS

hF kS

h
2

,                     (7)

где F kS( ) , а также h  — лагранжевы инвариан-
ты. Решение уравнения ищем в виде:

A Q= ( )H kS .

При k1  мы задаем функцию H  из условия 
H Fss = , а выражение для Q  получаем в виде 
разложения по малому параметру. Зависимость 
F S( )  может задаваться в различном виде, в том 
числе как фазовая структура вида:

F kS r= ( )cos � .

При k1  для вектора Q  получаем уравне-
ние:

Q Q Q∇( ) + × ∇[ ]+ ∆ =S H rot S SH Fss s
2

02 � Ω ,    (8)

H F kSss = ( )� .

Сохраняя главный член разложения, имеем

Q ∇( ) =S
2

0Ω ,

с учетом этого сомножителя мы находим про-
стую связь между полями скорости и завихрен-
ности:

V Q= ∇ ×[ ]H Ss .

Равновесие достигается при ∇ ∆( ) =S V 0. От-
клонение от равновесия создает аналогичную 
оптике картину фокусировок, при которой про-
исходит сближение лагранжевых траекторий  
и их растяжение в направлении течения. Таким 
образом, могут быть описаны трехмерные фазо-
вые структуры в форме струи или вихря. Пере-

ходя отсюда к уравнениям для завихренности, 
мы должны учесть эволюцию формы не только 
основного, но и дополнительного инварианта, 
который задан формулой (7). Это усложняет 
описание, хотя и не выводит его за рамки геоме-
трических представлений. Таким образом могут 
быть описаны не только парциальные, но и ком-
бинированные структуры в виде спиральных 
вихрей, для которых завихренность задается 
как сумма инвариантов Ω = ( ) ∇ + ∇( )H S h h1 2 .

Подобные структуры регистрируются в чис-
ленных моделях, связанных с интерпретацией 
лабораторных экспериментов. Они образуются 
около твердых или подвижных границ течения 
жидкости.

В целом сформулированный подход, как  
и в оптике, основан на асимптотике решений 
уравнений движения. Он дает картину эволю-
ции траекторий на определенном этапе. При 
сильном сближении лагранжевых траекторий 
необходимо учитывать как диссипативные эф-
фекты, так и более точную связь между полями 
скорости и завихренности. Более полная карти-
на поведения траекторий при нарушении рав-
новесия включает колебания между неустойчи-
выми стационарными состояниями. Для более 
полного описания могут быть использованы 
другие приближенные решения уравнения Пу-
ассона, учитывающие взаимодействие структур 
и их волновые свойства. В оптике это достигает-
ся на основе уравнения Леонтовича.

3. ГЕОМЕТРИЧЕСКОЕ ОПИСАНИЕ 
ДВУМЕРНЫХ СТРУКТУР

Рассмотрим подробнее двумерное течение.  
В этом случае завихренность является лагран-
жевым инвариантом, определяющим положе-
ние системы траекторий. Уравнение Пуассона 
для функции тока имеет вид:

∆ Ωψ = ( )kS .

Пространственное распределение лагран-
жевого инварианта, каким является завихрен-
ность, может быть задано в разных видах, на-
пример, как слоистая или фазовая структура. 
Простейшая фазовая структура имеет вид:

Ω Ω= 0 cos �kS.

Если область завихренности ограничена, то 
выражение для функции тока дополняется ре-
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шением однородного уравнения. Полное рас-
пределение завихреннности представляет собой 
сумму структур, расположенных как в физиче-
ском, так и в фазовом пространстве. Структуры 
взаимодействуют между собой, образуя различ-
ные ансамбли.

Пусть ψ = ( ) ( ) = ( )QH kS H kS kSss� �, Ω , тогда

∇ = ∇ + ∇ψ Q H H Q,                        (9)

т.е. поле скорости представляется в виде суммы 
компонент, описывающих движение по линиям 
Лагранжа и движение этих линий. При k1  
функция Q  удовлетворяет уравнению (8). Для 
главного члена разложения имеем:

Q P P S= = ∇( )−� �, 2.

Отсюда получаем для скорости течения:

∇ = ∇ + ∇ψ P H H P.                       (10)

Если для равновесного течения ψ ψ= ( )X Y, , 
то при наличии возмущения:

Ω Ω Ωt y x x y= −ψ ψ ,                       (11)

 S H P S P St y x x y= −( ).
Уравнение для S  соответствует уравнению 

для фазы в геометрической оптике [Кравцов  
и др., 1980] и дает основу для исследования тра-
екторий отдельных точек и их окрестностей. 
Полагая, что P  мало отклоняется от равновес-
ного значения P Y( ), получаем линейную или 
нелинейную систему для описания малых воз-
мущений. Более сильные отклонения требуют 
другого подхода, связанного с анализом функ-
ции P Y X,( ). Величина P  характеризует толщи-
ну вихревой линии. В равновесном случае она 
постоянна на линии, а при наличии возмуще-
нии меняется вдоль нее. При этом она представ-
ляет собой квазиинвариант, который задает си-
стему линий, пересекающую систему S r C( ) =  
и определяет характер движения. Особую роль 
играют точки локального равновесия, где 
∇ ∆∇( ) =S P 0. Линии S P� �,  образуют координат-

ную сетку, наложенную на обычные координа-
ты. Обе системы совпадают в случае равновесия 
и точка одной системы движется по другой. 
Движение точки по линии S C=  описывается 
уравнениями для переменных X Y� �, , которые со-
ответствуют уравнениям геометрической 
оптики.

Y H s P X H s Pt x t y= − ( ) = ( )� �, .               (12)

Из выражения P S Sy x
− = +1 2 2  имеем:

P
S S S S

P
P S S S S Px

x xx y xy
y x xy y yy= −

+( )
= − +( )2 2

2

2

2, .

Уравнения (12) описывают траектории R t0 � �,( ), 
на которых S const= . Величина P  характеризует 
толщину вихревой линии. В равновесном со-
стоянии она постоянна на этой линии, а при на-
личии возмущении меняется вдоль нее. При 
этом она представляет собой лагранжев инвари-
ант, который задает систему линий, пересекаю-
щую систему S r C( ) = . Линии S P� �,  образуют ко-
ординатную сетку, наложенную на обычные 
координаты. Обе системы совпадают в случае 
равновесия и точка одной системы движется по 
другой. Особую роль играют точки локального 
равновесия, где ∇ ∆∇( ) =S P 0. В остальных точ-
ках происходит движение, направленное на со-
вмещение этих векторов.

Рассмотрим структуру решения в окрестно-
сти некоторой точки S0:

S S S X S Y S X S Y S XY= + + + + +0 1 2 11
2

22
2

122 .

Функция P  имеет аналогичную структуру:

1
20 1 2 11

2
22

2
12P

P P X P Y P X P Y P XY= + + + + + ,

1
2 21 11 12P

P P X P Y
x







= + + ,,

1
2 22 12 2P

P P X P Y
y







= + + ..

Подставляя это выражение в уравнение (12), 
получаем решение вида:

X t X X e X et t( ) = + +0 1 2
1 2λ λ ,               (13)

     Y t Y Y e Y et t( ) = + +0 1 2
1 2λ λ , � �,

где коэффициенты зависят от начальных значе-
ний S P, .

Решение уравнения (12) имеет вид эллипса 
или гиперболы, по которым движется текущая 
точка. С каждой точкой связаны два вектора, 
которые стремятся совместиться между собой.

Представляя P P S X= ( ), ,  имеем уравнение:

S HP S X St x y= − ( ), .
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Уравнение для Y S X t, ,( )  принимает вид:

Y H S P S X St x y= − ( ) ( ), .                  (14)

Это уравнение дает «геометрическое» описа-
ние траекторий точки в других координатах. 
Движение траектории Y S X t, ,( )  происходит  
в двух направлениях. С одной стороны, траек-
тория искривляется, с другой — меняет свое по-
ложение относительно соседней траектории. 
Сгущение пучка траекторий сопровождается 
увеличением длины каждой из них.

Для решения уравнения в рамках геометри-
ческой теории следует представить функцию Px  
как зависящую только от координат и первых 
производных. Уравнение (14) может решаться  
в  различных приближениях с использованием  
и начальных условий. Предполагая Yx

2 1 ,  по-
лучаем уравнение:

S H S Yt sx= − ( ) .                       (15)

Для начального условия Y Sq x= ( )  имеем 
Y qsx x= .

Решение (15) дает «геометрическое» описа-
ние траекторий на плоскости S Xt ,( ). Оно опи-
сывает сгущение траекторий около линии по-
стоянной завихренности. Степень сгущения 
зависит от точки X . Общая картина движения 
остается сходной с описанной ранее. Точка 
qx = 0  остается центром структуры, состоящей 
из фронтов или областей сжатия–растяжения  
в направлении Y. Более полное описание струк-
тур поля завихренности требует учета движения 
по оси X . Когда вблизи линий нового равнове-
сия образуются узкие фронты могут возникать 
более сложные колебательные структуры, а так-
же может происходить переход к турбулент
ности.

Для более полного описания возникающих 
там эффектов необходим выход за пределы гео-
метрического приближения и учет высших про-
изводных в уравнениях. Ширина фронта может 
ограничиваться диссипацией подобно тому, 
как это происходит при образовании ударных 
волн в акустике [Гурбатов и др., 1983]. Другим 
ограничителем ширины фронта являются вто-
ричные волновые структур. В слоях между близ-
кими траекториями вихревые линии начинают 
пульсировать, изменяясь по толщине. Эти про-
цессы могут быть частично описаны при учете 

дополнительного члена в представлении реше-
ния уравнения Пуассона. 

Вместе с тем при решении уравнения Пу-
ассона наряду с простыми могут описываться  
и комбинированные структуры, представляю-
щие собой сумму двух или более полей завихрен-
ности. Такие структуры могут быть двух типов. 
С одной стороны, так может быть представле-
на деформированная простая структура. Так, 
области с большими градиентами могут быть 
выделены, как отдельные компоненты полного 
поля завихренности. Каждая из структур удов-
летворяет уравнению Пуассона и создает свое 
поле скорости, что в результате взаимодействия 
парциальных структур, приводит к образова-
нию триплета. Другие комбинации являются 
суммой независимых полей завихренности, на-
ложенных друг на друга в пространстве, с точка-
ми пересечения вихревых линий. К такому типу 
относятся вихревые решетки, используемые  
в лабораторных экспериментах. Эволюция та-
ких течений чаще всего рассматривается и как 
результат взаимодействия структур. Этот под-
ход следует из выражения:

Ω = = +( ) + −( )( )A X Y
A

X Y X Ycos cos cos cos .
2

  (16)

Две компоненты завихренности определяют 
две компоненты скорости. Базовая равновесная 
структура течения имеет вид:

V V1 2 2 1 0∇ + ∇ =Ω Ω .

При нарушении согласования возникают 
колебания, когда одна структура собирается  
в центре, а вторая располагается по ее сторонам. 
Такая картина хорошо видна на лабораторном 
эксперименте. Особый характер носит течение 
вблизи границы структуры. Для его описания 
необходимо использовать компоненту скоро-
сти, удовлетворяющую уравнению Лапласа, ко-
торое записывается в геометрическом прибли-
жении как

∇( ) + ∇( ) =H S H
2 2

0.

Вблизи твердой границы при больших чис-
лах Рейнольдса возникает узкий пограничный 
слой, где нормальная скорость мала, но проис-
ходит ее генерация. Образующуюся вихревую 
структуру показывает численный анализ тео-
ретической модели, интерпретирующей лабора-
торный эксперимент [Kostrykin et al., 2014].
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4. ЗАКЛЮЧЕНИЕ

Остановимся кратко на описании структур 
в бароклинных течениях несжимаемой жидко-
сти. Два лагранжева инварианта — плотность  
и потенциальная завихренность определяют 
два типа равновесного течения в вертикальной  
и горизонтальной плоскостях. При малых воз-
мущениях в каждой системе возникают быстрые 
и медленные колебания. Медленная компонента 
выделяется точкой геострофического или по-
добного ему равновесия, а быстрая определяется 
равновесием между скоростью и завихренно-
стью, как и в баротропных течениях. Такие ко-
лебания на фоне постоянного поля могут быть 
описаны на языке пространственно-временного 
преобразования Фурье. 

Вместе с тем начальное возмущение пред-
ставляет собой лагранжеву структуру траек-
тории, которая может быть описаны на гео-
метрическом языке. При наличии двух типов 
возмущений образуется парная структура из 
мелкомасштабной и крупномасштабной компо-
нент, которые при взаимодействии порождают 
еще одну. Подобные триплеты возникают и при 
колебаниях одного типа.

При наличии структур разного масштаба 
общая картина траекторий точки оказывает-
ся сложной и носит скорее стохастический ха-
рактер. Однако на отдельных пространствен-
но-временных участках отдельные структуры 
оказываются выраженными достаточно опре-
деленно. Геометрический подход к описанию 
течений несжимаемой жидкости представляет 
собой некоторую альтернативу подходу, осно-
ванному на преобразовании Фурье. Этот подход 
позволяет проследить за движением отдельной 
точки, включая деформацию ее окрестности. 
Для более полного описания эволюции течений 
полезно совмещение двух подходов. Крупно-
масштабные структуры при этом формируют-
ся на фоне мелкомасштабного хаоса, который 
описывается на языке спектра [Якушкин, 2023; 
Kostrykin et al., 2014].

БЛАГОДАРНОСТИ

Автор выражает глубокую благодарность 
А.А. Хапаеву за помощь в редактировании  
и оформлении работы.

СПИСОК ЛИТЕРАТУРЫ

Агафонцев Д.С., Кузнецов Е.А., Майлыбаев А.А., Сере-
щенко Е.В. Сжимаемые вихревые структуры и их 
роль в образовании турбулентности // УФН. 2022. 
Т. 192. С. 205–225.

Гончаров В.П., Павлов В.И. Гамильтоновая вихревая и 
волновая динамика. М.: ГЕОС, 2008. 432 с. 

Гурбатов С.Н., Саичев А.И., Якушкин И.Г. Нелинейные 
волны и одномерная турбулентность в средах без 
дисперсии // УФН. 1983. Т. 141. № 2. С. 221–253.

Должанский Ф.В., Крымов В.А., Манин Д.Ю. Устой-
чивость и вихревые структуры в квазидвумерных 
сдвиговых течениях // УФН. 1990. Т. 160. № 7.  
С. 1–45.

Должанский Ф.В., Пономарев В.М. Простейшие мед-
ленные многообразия баротропных и бароклин-
ных движений вращающейся жидкости // Изв. 
РАН. Физика атмосферы и океана. 2002. Т. 38. № 3. 
С. 316–330.

Должанский Ф.В. Основы геофизической гидродина-
мики. М.: Физматлит, 2011. 264 с.

Кляцкин В.И. Статистический анализ когерентных яв-
лений в стохастических динамических системах. 
М.: URSS, 2014. 768 c.

Кравцов Ю.А., Орлов Ю.И. Геометрическая оптика не-
однородных сред. М.: Наука, 1980. 306 с.

Рабинович М.И., Езерский А.Б. Динамическая теория 
формообразования. М.: Янус-К, 1998. 191 с.

Якушкин И.Г. О лагранжевом и гамильтоновом опи-
сании моделей геофизических течений идеальной 
жидкости // Изв. РАН. Физика атмосферы и океа-
на. 2005.Т. 41. № 2. С. 156–166.

Якушкин И.Г. Структурное описание геофизических 
случайных полей с негауссовской статистикой // 
Изв. РАН. Физика атмосферы и океана. 2023. T. 59. 
№ 2. С. 173–191.

Blackwelder R.F.М. Coherent structures associated with 
turbulent transport // Proc. 2nd  Int. Sump. Tokyo, 1987. 
P. 1–20.

Groesen Van E. Deformation of coherent structures // UK 
Rep. Prog. Phys. 1996. V. 59. P. 511–600.

Jimenez J. Coherent structures in wall-bounded turbulence //  
J. Fluid Mech. 2018. V. 842. P. 1–100.

Kostrykin S.V., Khapaev A.A., Yakushkin I.G. The influ-
ence of nonlinear bottom friction on the properties of 
decaying cyclonic and anticyclonic vortex structures in 
a shallow rotated fluid // J. of Fluid Mechanics. 2014.  
V. 753. P. 217–241.

Romanova N.N., Annenkov S.A. Three–wave resonant in-
teractions in unstable media // J. Fluid Mech. 2005.  
V. 539. P. 57–91.



ИЗВЕСТИЯ РАН. ФИЗИКА АТМОСФЕРЫ И ОКЕАНА         том 61         № 4          2025

ЛАГРАНЖЕВЫ (ФАЗОВЫЕ) СТРУКТУРЫ В НЕСЖИМАЕМОЙ ЖИДКОСТИ 429

Vallis G.K. Atmospheric and Oceanic Fluid Dynamics: 
Fundamentals and Large-Scale Circulation. Cam-
bridge University Press, 2017. 326 p.

LAGRANGIAN (PHASE) STRUCTURES IN AN INCOMPRESSIBLE FLUID
© 2025   I. G. Yakushkin

Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences,  
Pyzhevsky per., 3, bld. 1, Moscow, 119017 Russia

е-mail: lgg@ifaran.ru, iyakushkin@yandex.ru

The paper considers a geometric approach to describing structures in barotropic flows of an incompressible 
fluid. This type of description has an analogy in geometric optics. The evolution of equilibrium flows is 
considered, in which the trajectories of Lagrangian invariants, expressed through the vorticity of the flow, 
change. The connection between vorticity and velocity is established through the asymptotic behavior of the 
solution to the Poisson equation. The limits of applicability of the proposed approach are discussed, as well 
as the possibility of its generalization for baroclinic flows.

Keywords: structures, Lagrangian invariants, vorticity

Yakushkin I.G. On the structural description of random 
fields // Waves in Random and Complex Media. 2023. 
V. 33. Issue 5–6. P. 1195–1212.


