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1. ВВЕДЕНИЕ
Одноволновые решения баротропных уравне-

ний динамики атмосферы с монотонно меняю-
щимся во времени волновым числом k  получи-
ли в  свое время название транзиентных. 
Вероятно, эти решения представляются наиболее 
простыми формулами, которые описывают ре-
шения уравнения Чарни–Обухова среди боль-
шого числа подходов и решений для сдвиговой 
гидродинамической неустойчивости с влиянием 
β-эффекта:
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где U  и S  — фоновая скорость и горизонталь-
ный сдвиг скорости соответственно, L0  — внеш-
ний радиус деформации Россби L gH0 0 0= / (2 )Ω  
в слое H0, Ω0  — угловая скорость вращения 
Земли, β  — изменение параметра Кориолиса  
с широтой.

Для зависящего от времени меридионально-
го волнового числа k ty ( )  имеется точное уравне-
ние, которое следует из уравнения (1)

k
L

dk t

dt
Sk k

k t k k t

y
x

x y

2

0
2

2

2 2 2

1 ( )
= 0,

( ) = ( ),

+








 +

+
                (2)

так что всегда | | ,k ty → ∞ → ∞.
В таких решениях энергия волны пропорци-

ональна k a2 2| | , a  — амплитуда волны. И если 
вначале была мелкая рябь с k a→ ∞ →, 0, то по-
сле уменьшения k  амплитуда | |a  увеличивает-
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ся. Однако затем волновое число k  вновь воз-
растает с соответствующим затуханием 
амплитуды | |a : все, что из ряби возникло, в рябь 
и ушло.

На роль подобных возмущений в  развитии 
атмосферных циркуляций впервые внимание 
было обращено в [Farrell, 1982]. C их возникно-
вением стали связывать также неопределенно-
сти прогнозов [Buizza et al., 1995]. В геофизиче-
ской гидродинамике потоков со сдвигом такие 
решения изучались в [Чагелишвили и Чхетиа-
ни, 1995; Чхетиани и др., 2015; Чхетиани и Ка-
лашник, 2018], для бароклинных возмущений  
с горизонтальным и вертикальным сдвигом 
[Калашник и др., 2018], в динамических систе-
мах [Шухман, 2005], для систем с вязкостью  
и сдвигом скорости [Shukhman and Levinski, 
2005; Shukhman, 2007], а в решениях для прото-
планетных дисков возникали в [Knobloch, 1985; 
Klahr, 2004; Petersen et al., 200a; Petersen et al., 
2007b]. Почти 40 лет назад решения с меняю-
щимся волновым числом, u U k x= ( ( ) ( ( ) ) ,Re t i texp )
k( ) =( ( ), ( ), ( ))t k t k t k tx y z , появились при исследова-
нии трехмерной неустойчивости в неограни-
ченных течениях с эллиптическими линиями 
тока (эллиптическая неустойчивость) [Bayly, 
1986; Craik, 1989], упоминались для неустойчи-
вости в замкнутых эллипсоидальных объемах 
[Gledzer and Ponomarev, 1992]. Развитие подхода 
при рассмотрении эволюции локализованного 
вихревого возмущения в  эллиптическом тече-
нии было выполнено в линейном анализе 
[Shukhman, 2007] и нелинейном [Karp et al., 
2017]. Была обнаружена важная роль таких мод  
в задаче о циркуляции Хэдли с горизонтально 
неоднородным распределением температуры 
[Гледзер, 2008].

Их привлекательность заключается в том, 
что эти решения точные для соответствующих 
уравнений движения и относительно просты 
для использования. Однако монотонность из-
менения волнового числа с возникновением 
волн как бы из ничего с последующим исчез-
новением затрудняет их интерпретацию для 
конкретных приложений. Кроме того, до сих 
пор не исследовалось влияние на такие волны 
эффектов рельефа подстилающей поверхности, 
а также бароклинности. Ниже предлагаются на 
основе этих факторов сценарии стабилизации 
волнового числа и амплитуды получаемых ре-
шений.

2. УЧЕТ РЕЛЬЕФА И БАРОКЛИННОСТИ
Уравнение для потенциального вихря с уче-

том рельефа h x y( , )  для слоя H0  с бета-эффек-
том в баротропном приближении имеет вид  
(см.  [Должанский, 2011; Cushman-Roisin and 
Beckers, 2009])
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где f0 0= 2Ω sin φ, φ  — широта местности; входит 
отношение рельефа h  к толщине однородного 
по температуре слоя H0.

Рельеф зададим в форме

f

H
h x y y x y0

0

2( , ) = / 2,δ ε γ+ +                (4)

со склонами δ, ε  (размерность 1/ (м с)) по коор-
динатам y, x  и со сдвигом наклона γ  размер-
ность 1/(м 2  с)).
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где U0, V0  — постоянные величины, задающие 
скорости по осям x y, , сдвиг скорости S. Заме-
тим, что параметры S  и γ  задают сдвиги скоро-
сти и наклона рельефа.

Внешнее действие Ψ  (влияние внешних  
факторов) задаем в линейной форме Ψ Γ= F y+ . 
Здесь формально включен постоянный источ-
ник потенциального вихря, а также добавка, 
линейно зависящая от широты y. Величины U0, 
V0, S, относящиеся к полю скорости, также яв-
ляются внешними по отношению к динамике, 
задаваемой уравнением (3) для потенциального 
вихря. Однако между всеми этими величинами 
и параметрами рельефа обнаруживается связь в 
виде уравнений (6).

Тогда все члены в уравнении окажутся само-
согласованы, и в результате получим уравнения 
для U0, V0, k ty ( ), a t( ), b t( )

γ ε β δ εV S V U F0 0 0= , ( ) = ,+ + +Γ  ,           (6)
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Уравнения (6) задают постоянные компонен-
ты скорости U0, V0  через компоненты наклонов 
ε, δ  и сдвига скорости S  и сдвига наклона γ  по 
оси y. В уравнениях также заданной считается 
x -компонента волнового числа kx. Из уравне-
ний в (7) для a t( ), b t( )  следует, что сохраняется 
инвариант ( 1/ ) ( )2

0
2 2 2 2k L a b+ + , связанный  

с квадратом вихря ( )2∆ψ . Заметим, что если 
внешний источник отсутствует, F = 0, Γ = 0, то в 
уравнениях либо отсутствуют постоянная ме-
ридиональная скорость V0  и сдвиг ε  по коорди-
нате x  (долгота), либо скорости U0, V0  связаны 
со сдвигом скорости S  и параметрами рельефа 
δ, ε, γ  соотношениями V S0 = − ε

γ
, U S

0 =( )β δ
γ

+ .

Уравнение для k ty ( )  в (7), которое отличается 
от (2) только членом с γ , допускает стационар-
ное решение

k
S

2 = ,
γ                                  (8)

при сдвигах γ, S  одного знака. Это возможно, 
если при γ > 0  имеется долина вдоль параллели 
y = 0  со средней скоростью U Sy0 =  при сдвиге 
S > 0  (к северу скорость увеличивается). Также 
при γ < 0  — горный хребет вдоль параллели со 
сдвигом S < 0  скорости U Sy0 =  — скорость уве-
личивается к югу. Также необходим порог γ

S
kx> 2.

Для этого стационарного состояния можно най-
ти решение для амплитуд ( ( ), ( )) = ( )( , ),a t b t i t A Bexp ω
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Тогда волна exp i k x k y tx y( )+ + ω  примет  
форму
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где ux, uy  — компоненты скорости переноса вол-
ны и q k U p k V S= , = =2

0
2

0− − +β δ ε Γ .
В предельном переходе k → ∞, скорость пере-

носа волны совпадает с внешней u U u Vx y→ →0 0, .
В приведенных формулах горизонтальное 

волновое число было произвольным. Пусть ча-
стота ω  будет произвольной. Тогда из уравне-
ний

ω γ= , = =2 2 2k u k u k k k Sx x y y x y+ +           (11)

можно выразить kx, ky  через остальные параме-
тры и ω:
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То есть, получается в какой-то степени бимо-
дальность: два решения с одинаковой частотой 
ω  отличаются большей или меньшей зонально-
стью или меридиональностью в зависимости от 
величины компонент kx, ky  (см.  [Charney and 
DeVore, 1979; Обухов и др., 1976; Гледзер и др., 
2021]). Речь здесь идет о множественности неко-
торых состояний атмосферных движений,  
в частности, когда имеются два отличающихся 
состояния. Двумодальность восходит к первой 
из этих упомянутых работ, в которой и учиты-
вался рельеф в простейшей модели с небольшим 
числом переменных. В работе А.М. Обухова  
с сотрудниками был найден другой вид бимо-
дальности — в замкнутых сосудах наблюдались 
режимы с разнонаправленными осями крупно-
масштабного вращения жидкости при одной  
и той же величине внешней генерации течений.

Выбор решения зависит от устойчивости со-
стояния k S2 = γ : из уравнения для k ty ( )  при 
k t k ky y y( ) = + ′  имеем в линейном приближении
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( 1 ) = 2 .2
0
2k L

dk

dt
Sk k ky

x y y+
′

− ′               (13)

Возмущения ′ky  будут затухать, если Sk kx y > 0. 
На рис. 1 показан переход к стационарным ре-
жимам волнового числа ky  при выполнении 
этого условия для двух значений γ S  в безраз-
мерных переменных ( , )0kL St  при γ S L0 =   
= 0.4,0.7 с малыми начальными значеними  
для безразмерных переменных k Lx 0 = 0.01− , 
k Ly 0 = 0.01− . Тогда при St → ∞, k Ly 0 →   

→ − ( ) ≈γ
S

L k Lx0
2

0
2

0.4,0.7 соответственно.

Скорость переноса волны ux, uy  может обра-
щаться в нуль, т.е. волна окажется заблокиро-
ванной, если p = 0, q = 0: при k S2 = γ ,

γ β δ
S

U0 = , = 0.+  Γ                         (14)

Условие Γ = 0  означает, что отсутствует изме-
нение термических факторов с широтой y, от-
сюда uy = 0. Если пренебречь β -эффектом, т.е. 
волна не планетарного масштаба, то условие 
ux = 0  — отсутствие зонального переноса волны, 
примет вид

γ
δ

= .
0

S

U
                                 (15)

Это условие означает, что блокирование вол-
ны возможно, если отношение сдвига скоро-
сти к самой скорости совпадает с отношением 
сдвига наклона к его наклону: геометрия поля 
скорости должна подстроиться к геометрии ре-
льефа. Отметим, что возможная связь транзи-
ентных мод с блокированием указывалась в ра-
боте [Чхетиани и Калашник, 2018].

Влияние бароклинности рассмотрим в про-
стейшем виде, сопоставляя вывод с приведен-
ным выше учетом рельефа. Исходным для учета 
бароклинности (без рельефа) является уравне-
ние сохранения потенциального вихря Π  (см.  
[Должанский, 2011], уравнение (9.24)):
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где θ  — отклонение потенциальной температу-
ры от равновесного значения Θz, зависящего 
только от вертикальной координаты z: 
Θ Θ= ( )z z + θ. Далее обычно это отклонение вы-
ражается через производную по z  от функции 
тока, и уравнение замыкается. Предположим, 
что имеется не только равновесная потенциаль-
ная температура Θz, но и некоторая фоновая по-
тенциальная температура, зависящая от преды-
дущих микрорельефных и температурных 
условий, θ θ θ= f + ′, причем Θz  и θ f  от верти-
кальной координаты z  зависят линейно:

Θ Θ Θz z z

f f
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0 0
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⋅ +

const const

constθ θ
               (17)

где вертикальный градиент θ f x y0 ( , )  зависит от 
горизонтальных координат x y, .

Тогда  добавка  в потенциальном вихре
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аналогична члену − f
h

H0
0

 в потенциальном вих-

ре при учете рельефа

Π Ωr z f f
h

H
= .0 0

0

+ −                     (19)

Поэтому влияние бароклинности в этой про-
стой модели сводится к уравнению для «релье-
фа» hf . По аналогии с (4) имеем

k Ly 0

0

–0.1

–0.2

–0.3

–0.4

–0.5

–0.6

–0.7

100 200 300 400 500 600St

0.4

0.7

0
Рис. 1. Переход к стационарным режимам безраз-
мерного волнового числа k Ly 0

 при 
γ / = 0.4,0.7; = 0.010 0SL k Lx −
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f
h

H
f

x y
y x yf f

z
f f f0

0
0

0

0
2=

( , )
= 2.− + +

θ
δ ε γ

Θ
   (20)

Коэффициенты в правой части определяют-
ся по зависимости от x y,  вертикального гради-
ента θ f  отклонения потенциальной температу-
ры. Отсюда можно найти коэффициент γ f  
«виртуальной» горы. Формулы (20) аналогично 
приведенным выше при учете рельефа могут 
быть использованы для оценки длины волны 
при ее стабилизации в потоке (см. далее).

3. ПЕРИОДИЧЕСКИЕ СТРУКТУРЫ 
БАРОТРОПНОГО ПОЛЯ

3.1. Волны при сдвигах скорости и рельефа

Рассматриваемая волна с волновым числом 
k S=( )1 2γ  в относительно тонком однородном 
слое H0  порядка нескольких сотен метров при 
вариации рельефа h  в несколько десятков ме-
тров может проявиться в виде периодической 
структуры облачности на верхней границе слоя, 
как, например, на рис. 2а, 2б.

Рассмотрим для оценок изменение скорости 
∆u  в среднем в 1  м/с на расстоянии 10  км и из-
менение наклона рельефа на расстоянии Lg∞100  
м при относительной высоте рельефа h H0 0.1∞ .

Тогда сдвиг скорости S u Ls∞ ∞ −∆ 10 4  (при 
масштабе 10  км сдвига скорости на 1   м/с, 
Ls =104  м, ∆u =1   м/с), а h H0 = 0.1, и из (4) 

γ =
20

0
2

f

H

h

Lg

, f0
410∝ −  характерный размер рель

ефа L Lr g= 2 , и получаем k L S= 2π γ= , 

L S L
u

f L h H
L Lr

s
r r= 2 =

1

2 /
= 5 7

0 0

π γ π π∆ ∞ ⋅ : 

длина волны почти на порядок превышает го-
ризонтальный масштаб рельефа для выбранных 
значений относительной высоты горы и мас-
штаба сдвига скорости. Из этих формул следует, 
что чем меньше перепады рельефа, тем больше 
расстояние между гребнями волн.

Сдвиг скорости S u Ls= ∆  фактически задает 
вихрь ω  поля скорости, ω∞S. Поэтому приве-
денную выше формулу для L  можно переписать 
в виде

L L
f h Hr=

1

2 /
.

0 0

π ω                       (21)

Для крупномасштабных движений атмосфе-
ры отношение ω

f
Rk

0

=  — число Россби–Кибеля 

(см. [Должанский, 2011]) – является малой вели-
чиной: угловая скорость вращения циклонов 
и  антициклонов значительно меньше угловой 
скорости вращения Земли. Рассмотрим анти-
циклоническую область, в середине которой со-
храняется стратификация, близкая к нейтраль-

ной, т. е. 
d

dz
z

z

Θ
Θ Γ= 0
 , где Г — равновесный 

вертикальный градиент температуры. К внеш-
нему краю антициклона на расстоянии ∝ Lr / 2  
стратификация переходит к циклонической с 
существенной величиной градиента потенци-
альной температуры

θ
θ

f
f z

z

d

dz

d

dz
0 0= =

Θ
Θ .                (22)

Из формулы (20) можно оценить величину 
h/H0, входящую в (21), при учете бароклинности 
атмосферы:

h H
f

z
0

0

0
=

θ

Θ
.                               (23)

Тогда формула (21) для L при учете бароклин-
ных эффектов примет вид

L L Rr k
z

f

= ⋅π
θ

Θ0

02
.                           (24)

Отсюда в выбранных условиях (22) и малости 
числа Россби–Кибеля длина волны может быть 
намного меньше горизонтальных размеров анти-
циклонической области с нейтральной страти-
фикацией. Возможно этот механизм оказывает 
некоторое влияние на дистанцию между роллами 
порядка 5–10 км, показанную на рис. 2в–2е для 
антициклонов в летние и зимние периоды.

3.2. Волны при сдвиге скорости  
в экмановском погранслое

В приведенных выше формулах длина волны 
связывалась с горизонтальным масштабом релье-
фа или антициклонической области при фикси-
рованном отношении его высоты к толщине ба-
ротропного слоя. Однако волны в этом слое имеют 
место, если рельефа нет или он мал, когда, как от-
мечалось выше, волны из-за рельефа редкие. 
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Тогда длины волн можно сопоставлять с толщи-
ной погранслоя H0, но основную роль может 
играть также вертикальный сдвиг скорости. 
При этом в слое H0  имеется развитая турбу-
лентность, приводящая к образованию экма-
новского погранслоя в приземной части атмос-
феры и, как следствие, появление периодических 

структур в виде упорядоченных спиралевидных 
вихрей (роллов) с горизонтальной осью, на-
правленной примерно вдоль среднего направле-
ния геострофического ветра и заполняющие 
значительный объем турбулентного атмосфер-
ного пограничного слоя (АПС) [Kuettner, 1959; 
Brown, 1980; Михайлова и Орданович, 1991]. 

б)а)

г)в)

д)
е)

Рис. 2. Примеры волн при сдвигах скорости и рельефа: а, б — рисунки из книги [Häckel, 2018]; в — снимок Метеор-М, 
Роскосмос, Волгоград, 10.07.2024; г — снимок Метеор-М, Роскосмос, Охотское море, 29.12.2023; д, е — роллы зимой, 
снимки MODIS: с ресурса https://worldview.earthdata.nasa.gov/: 06.02.2018 Курская обл., 06.02.2024 Калмыкия
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Присутствие роллов часто выявляется на спут-
никовых изображениях ПС в виде «облачных 
улиц», выстроившихся в параллельные ряды, 
отстоящие друг от друга на несколько киломе-
тров, вытянутые примерно вдоль направления 
ветра на сотни километров и сохраняющиеся 
в течении нескольких суток (см. рис. 2в, е). Об-
лака формируются в области восходящих дви-
жений между роллами при сопутствующих их 
образованию термодинамических условиях. 
Однако, спиралевидные вихри часто присут-
ствуют и в безоблачных условиях (рис.  2в–е). 
Это подтверждается наблюдением линейных 
полос (стриков) с параметрами, весьма близки-
ми к роллам, на спутниковых синтетических 
апертурных радарных изображениях в безо-
блачных условиях [Alpers and Brummer, 1994; 
Mourad and Walter, 1996]. Сопоставление радар-
ных изображений и облачных улиц ясно указы-
вает на то, что они являются разной визуализа-
цией одного и того же явления.

В связи с этим можно ставить задачу, как 
связать упомянутые структуры с условиями 
в пограничных слоях и конкретными горизон-
тальными термическими или рельефными не-
однородностями.

Развитие роллов связано с неустойчивостя-
ми, развивающимися в АПС и формирующими 
при взаимодействии со средним течением 
устойчивую вторичную циркуляцию. Можно 
выделить механизм, связанный с неустойчиво-
стью экмановского слоя в условиях, близких 
к нейтральным или слабонеустойчивой страти-
фикации. Экмановский профиль средней ско-
рости является результатом равновесия вязких 
и кориолисовых сил. Основное движение в нем 
происходит в плоскости параллельной подсти-
лающей поверхности с поворотом вектора ско-
рости вокруг вертикальной оси: если W( )z  — 
комплексная  переменная для среднего поля 
скорости в атмосферном пограничном слое, 
W U U V V= − + −( )G Gi , где UG , VG  — геострофи-
ческая скорость на верхней границе АПС, то 
указанное равновесие соответствует уравнению 

νt
z

i
∂
∂

−
2

2 02 = 0
W

WΩ , где νt  — турбулентная вяз-

кость, определяющая экмановский масштаб

h t=
0

1 2
ν
Ω





  ( Ω0 — частота вращения). Решение 

этого уравнения дает известную спираль Экма-
на с экспоненциальной зависимостью от высо-
ты, переходящую в геострофическое движение. 
Задача об устойчивости этого течения приводит 
решениям с характерными вторичными вихре-
выми структурами в пограничном слое, кото-
рые соответствуют роллам, повернутым на не-
который угол по отношению к направлению 
геострофического ветра. При этом в попереч-
ном к роллам направлении волновое число α  
максимально неустойчивого решения, 
exp( ( ))i y Ctα − , Im Re C( ) ( )> 0α , оказалось прибли-
женно равным

α π≈
2H

                                  (25)

для слоя толщины H. Если L  — длина волны, 
L = 2 /π α, то L H≈ 4 . Оценки длины волн — рас-
стояний между роллами приводились в работах 
[LeMone, 1973; Lilly, 1966; Brown, 1970].  
В целом они соответствуют этой величине с не-
большими отличиями в большую или меньшую 
стороны.

Надо отметить, что в экмановском слое так-
же существуют условия для развития транзи-
ентных мод [Foster, 1997; Hibino et al., 2012; Чхе-
тиани и Вазаева, 2019], с которыми связывается 
развитие субмезомасштабных структур, прояв-
ляющихся в длинноволновой области спектра 
энергии наклоном –1 [Кадер, 1988; Drobinski and 
Foster, 2003].

4. БАРОКЛИННОСТЬ  
В ПРОТОПЛАНЕТНЫХ ДИСКАХ

Возможность стабилизации волны в уравне-
ниях баротропной динамики атмосферы, при 
сохранении свойства решения как точного, свя-
зана с простым фактом, что волновое число 
k ty ( )  в уравнениях (1)–(7) — действительная ве-
личина. Однако представляет интерес рассмо-
треть случай, когда k ty ( )  — комплексное число. 
Тогда решение может возрастать или затухать  
с изменением координаты y . В геофизической 
гидродинамике таких решений с транзиентных 
модами пока не найдено. Однако для бароклин-
ной динамики (упрощенной) протопланетных 
дисков такие решения могут иметь место.

Уравнения бароклинной динамики в дву-
мерном ( r — радиус, ϕ  — азимутальный угол) 
протопланетном диске представлены во многих 
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работах (см. [Knobloch, 1985; Klahr, 2004; Petersen 
et al., 2007a; Petersen et al., 2007b]).

ζ ζ ζ ζ ψ

ζ ψ
ϕ

ζ ψ

ϕ

ϕ

= , =
1

,

=
1 1

,

( ,
1

0

2
0

2

2

r r

r r

r

r

r

t
D

+ ∂
∂

∂
∂







∂
∂

∂
∂

+

 
Σ

Σ

Σ00

0

0 0

0

) = ,

=
1

, =
1

,

1
( , ) =

ζ
π θ

ϕ
ψ ψ

ϕ
θ ψ θ

c

r r

u
r

v
r

t
D

p ∂
∂

∂ ′
∂

∂
∂

− ∂
∂

∂
∂

+ −

Σ Σ

Σ

 

θθ θ
τ

ϕ ϕ

−

∂
∂

∂
∂

− ∂
∂

∂
∂

0( )
,

( , ) = ,

r

D a b
a

r

b

r

b

r

a

r

         

(26)

где θ  — потенциальная температура; 

θ =
( )0T

p r

p
in

R c p





, Σ0  — поверхностная плот-

ность; π0  — давление Экснера; τ  — время радиа-
ционного выхолаживания; p  — давление; ζr  —  
компонента завихренности, направленная 
вдоль радиуса; ζϕ  — компонента завихренно-
сти, направленная вдоль орбиты; θ θ− 0( )r  — от-
клонение потенциальной температуры от рав-
новесной, зависящей только от радиуса.

Из последнего в (26):

θ θ τ θ ψ θ

ψ θ ψ θ
ϕ

θ ψ
ϕ

− − ∂
∂

+






∂
∂

∂
∂

− ∂
∂

∂
∂

0
0

( ) =
1

( , ) ,

( , ) = ,

r
t

D

D
r r r r

Σ

           
(27)

что вместе со вторым в (26) дает

∂
∂

+

= −
∂
∂

∂
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+ ∂
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
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0
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         (28)

Максимально упростим уравнения (26), (28), 
предполагая, что Σ Σ0 0= ( )r , π π0 0= ( )r , и потен-
циальная температура θ  также зависит только 
от радиуса, θ θ= ( )r .

Последний член в (28) преобразуется в

∂
∂

∂
∂

− ∂
∂

∂
∂







− ∂
∂r

D
r r r rϕ

ψ θ
ϕ

ψ
ϕ

θ θ ζϕ1
( , ) =

1
= ,

0 0Σ Σ
  (29)

и уравнение (28) примет форму
∂
∂

+ − −
∂
∂

∂
∂

ζ ψ ζ κζ κ τ
π θϕ

t
D c

r rp( ,
1

) = , = ,
0

0

Σ
   (30)

где κ  — коэффициент трения или инкремент, 
зависящий от радиальных изменений давления 
Экснера и потенциальной температуры. Такая 
форма бароклинной динамики в геофизической 
гидродинамике не встречается: в правой части 
уравнения — трение или инкремент, зависящие 
от π0( )r , θ( )r , которые включают ϕ  — компоненту 
завихренности (т. е. вдоль орбит), хотя в левой 
части уравнения — изменение полной 
завихренности (в свое время А.М. Обухов 
называл это «возбуждение инкрементом». Если 
перейти к локальным декартовым координатам 
dx rd= ϕ, dy dr= , D z u z x v z y( , ) =ψ ∂ ∂ + ∂ ∂ , 
u y= 0∂ ∂ψ Σ , v x= 0−∂ ∂ψ Σ , то уравнение 
упрощается ( y  — координата по радиусу)

∂
∂

+ ∇ ∂
∂

∂
∂

− ′
ζ ζ θ τπ
t

C
y

v

x
C cp yu = , = .0       (31)

Это уравнение отличается от баротропных для 
атмосферных движений: в уравнении (3) бета-

член (орографический) имеет вид f

H

h

y
v0

0

1∂
∂

⋅ ,  

а в последнем уравнении имеем C
y

v

x

∂
∂

⋅ ∂
∂

θ , где 

роль рельефа приняла потенциальная темпера-
тура, но вместо меридиональной скорости v  по-
явилась зональная производная от нее.

Итак, рассмотрим двумерное уравнение вих-
ря, как и в (3), с правой частью из (31) с потенци-
альной температурой и потенциальным вихрем 
(независимо от определений (26), здесь важна 
форма правой части (31)):

θ γ ψ ψ ψ
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2
, = , = , = ,

2y
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    (32)

где γ  задана,

∂
∂

+ ∂
∂
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θ              (33)

Решение ищем в форме

ψ( , , ) =
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( , ) ( ) ( , ) ( )

0 0

2
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x y t u y v x S
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A y t ik x A y t ik xx x

− + − +

+ + −exp exp ,,

A y t a t ik t yy( , ) = ( ) ( ( ) ),exp          
(34)
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где u0, v0, S, kx  — заданные средние компонен-
ты скорости, сдвиг, зональное волновое число, 
функции a t( )  и k ty ( )  подлежат определению.

Для k ty ( ), a t( )  получатся уравнения
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dt
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x y

x y

( )

( )
= 0,

( )
[ ( )] (

2

2 2

0 0

+ +
+

+ +

γ

))

( )
( ) 1

( )
= 0.

2

2 2

+

+
+

 a t
dk t

dt k k t

y

x y

           
(35)

Из первого в (35) уравнения следует, что k ty ( )  
всегда содержит мнимую часть Im k ty[ ( )] 0≠ .  
И следствием этого является неравенство нулю 
нелинейных квадратичных по a t( )  членов  
в уравнении (33):

N a y a a k k k k k

i k k y

x y y y y

y y

( , ) = ( ) ( ) ( )

( ( ) ).

* * 2 *

*

− ⋅ ⋅ − +

−exp       
(36)

Если ky  — действительная величина, то 
N = 0, как в случае уравнений (1)–(3), и соответ-
ствующие одноволновые решения оказываются 
точными.

Чтобы сохранить это свойство точности ре-
шения уравнения (33), можно дополнить форму-
лы для потенциальной температуры и потеци-
ального вихря членами с зависимостью от t y, :

θ γ θ ψ=
2

( , ), = ( , ),
2y

t y G t y+ +

Π ∆           (37)

а в функцию тока (34) добавить член ψ0( , )t y . 
Если в (37) параметр γ  произвольный, то функ-
ции ψ0, θ, G  определяются с учетом уравнений 
(35), (36).

Подстановка (34) с добавленными слагаемы-
ми G, ψ0  в (33) приводит к появлению в левой 
части уравнения слагаемых, с зависимостью 
только от t, y, включая N a y( , ). Это дает уравне-
ние для G, ψ0  с производной по времени

( )( ) ( , ) = 0,0 0
∂
∂

+ ∂
∂

+ +
t

v
y

G N a yψ ''           (38)

где штрихи означают производные по y.
Кроме того, из правой части (33) появляется 

член − ′ +( )−
C Ae

x
A e

xikx ikxθ * . Вместе с аналогич-

ными слагаемыми с участием производных по 

y  функций G, ψ0  от нелинейных слагаемых из 
левой части уравнения (33) при обращении  
в нуль коэффициента при Ae

xikx , A e
xikx* −  име-

ем уравнение:

′ + + + + ′





θ ψ ψi
Ck

k k G
x

x y
1

( ) = 0.2 2
0 0' '''        (39)

Так как все три используемые выше величи-
ны — действительные, то из последнего уравне-
ния в (38), (39) имеем при k t R t i I ty k k( ) = ( ) ( )+ ⋅ ,

( ) = 0,

=
2

.

2 2 2
0 0

0

k R I G

Ck
R I

x k k

x
k k

+ − + + ′

′ ⋅ ⋅

ψ ψ

θ ψ

' '''

'          (40)

Величины R Ik k,  зависят только от времени t . 
Поэтому

ψ ψ0
2 2 2

0 1= ( ) ( ),''+ − + − +G k R I c tx k k         (41)

и из уравнения (38) получим уравнение

( )( ) = ( , ) ( ).0
2 2 2

0 2
∂
∂

+ ∂
∂

+ − +
t

v
y

k R I N a y c tx k k ψ    (42)

Отсюда определяются все три величины 
ψ θ0, ,G   с зависимостью от aa*.

Уравнения (35) для амплитуды a t( )  и волно-
вого числа k ty ( )  имеют место как для линейного 
приближения при | ( ) | 0a t → , так и в рассмотрен-
ном случае нелинейной задачи. Стационарное  
решение для k t ky y( ) = 0  равно:

k iZ
C

S
k iZ

S

C
ky n x n x0 = | | 1 | | ,± − −γ

γ         (43)

где Zn  — знак C

S

γ .

Для оценок рассмотрим случай длинновол-
новых по x  возмущений,

k
C

S
C cx p y| |, = .0

γ τπ − ′                     (44)

Тогда приближенно

k
iZ

k
C

S ky
n

x
x

0
1

2
| |

1
.≈ ±

−
⋅γ                (45)

Поэтому | |0k ky x , т.е. длина волны по на-
правлению y  (радиальному) намного меньше 
длины по азимутальному x. В неравенстве для 
kx  в правой части C Sγ /  входят как характери-
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стики диска, cp yτπ′0 , бароклинности γ , так  
и сдвига скорости S . Такая вытянутая структу-
ра волны отражает многополосную картину по-
лей в диске, найденную численно в работах 
[Petersen et al., 2007a; Petersen et al., 2007b]. Эти же 
величины определяют экспоненциальный рост 
или затухание скорости при увеличении y , т.е. 

радиуса диска, exp( )− ⋅I yk , I
C k

Sk
x=

1

2
| |±

γ .

5. ВЫВОДЫ

Учет рельефа или расслоенности геофи-
зических течений со сдвигом скорости может 
оказать стабилизирующее влияние на масштаб 
возникающей в потоке волны. Необходимое 
условие для этого — устойчивость соответству-
ющих решений уравнений (6), (7). При согла-
совании сдвигов скорости и наклонов рельефа 
с их средними значениями возможно блокиро-
вание — образование стоячей волны. Для вол-
ны с фиксированной частотой реализуется би-
модальность: два решения с отличающимися 
зональной и меридиональной картинами поля 
скорости. Для упрощенных уравнений  прото-
планетных дисков, которые были рассмотрены 
как пример иного, чем в геофизической гидро-
динамике, влияния бароклинных эффектов, 
также имеют место стационарные решения для 
радиального волнового числа.
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THE STABILIZATION OF WAVE DISTURBANCES  
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The stabilization mechanisms of unboundedly increasing wave numbers of transient modes for single-wave 
solutions of the atmospheric dynamics equations are considered, taking into account the relief and var-
ious forms of baroclinicity with preservation of the properties of the solutions as exact ones. Estimates 
of the wave numbers under the action of velocity shears and relief inclinations, baroclinicity, and also in 
the Ekman boundary layer in comparison with observations of periodic cloud structures have been made. 
Parameter values at which wave blocking is possible are noted. Bimodal solutions of the equations are also 
indicated. Estimates of the parameters of transient wave stationarity taking into account baroclinicity in 
protoplanetary disks (as an example, different from baroclinicity in geophysical hydrodynamics) show a 
multiband structure of velocity fields.
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