ОНЗ Известия Российской академии наук. Физика атмосферы и океана Izvestiya, Atmospheric and Oceanic Physics

  • ISSN (Print) 0002-3515
  • ISSN (Online) 3034-6487

ЭМИССИЯ МЕТАНА ИЗ ОЗЕР И ВОДОХРАНИЛИЩ: НЕОПРЕДЕЛЕННОСТИ, СВЯЗАННЫЕ С ФОРМИРОВАНИЕМ И РАЗРУШЕНИЕМ ЛЕДЯНОГО ПОКРОВА

Код статьи
S3034648725040092-1
DOI
10.7868/S3034648725040092
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 61 / Номер выпуска 4
Страницы
538-552
Аннотация
Среди парниковых газов земной атмосферы метан занимает второе место после углекислого газа по величине вклада в глобальное потепление климата. Пресноводные водоемы (озера и водохранилища), будучи наиболее значимым источником метана в планетарном масштабе, распределены по поверхности суши таким образом, что большая их часть на несколько месяцев в году покрывается льдом. В период ледостава водная толща полностью или частично изолируется от атмосферы, что приводит к прекращению эмиссий метана либо к их локализации в местах формирования незамерзающих пропарин в ледяном покрове. Метан, накопленный подо льдом в растворенном виде и в газовых включениях в ледяном покрове, высвобождается из водоемов при весеннем разрушении льда (так называемый весенний выброс). В данной обзорной статье подробно рассматриваются пути выделения метана со дна замерзающих озер и водохранилищ, механизмы его концентрирования в водной толще и в формирующемся ледяном покрове, а также сопутствующие и препятствующие такому концентрированию подледные процессы и ледовые структуры. Также обсуждаются факторы, влияющие на интенсивность весеннего выброса метана, и актуальные подходы к частичным и интегральным оценкам этого выброса. Систематизированные в статье данные могут использоваться как при планировании полевых кампаний на замерзающих водоемах в зимне-весенний период, так и при разработке процесс-ориентированных моделей, учитывающих влияние ледяного покрова на пространственно-временную динамику углерода в пресноводных экосистемах и на эмиссии метана из таких экосистем.
Ключевые слова
парниковые газы цикл углерода эмиссия метана термокарстовые озера ледяной покров водоемов
Дата публикации
09.04.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
23

Библиография

  1. 1. Бородай Н.И. Материалы к изучению строения ледяного покрова Байкала // Труды Байкальской лимнологической станции. Т. IX. М.; Л.: Изд-во АН СССР, 1939. С. 71–114.
  2. 2. Вайнберг Б.П. Лед. Свойства, возникновение и исчезновение льда. М.; Л.: Гос. изд. техн.-теор. лит., 1940. 524 с.
  3. 3. Верещагин Г.Ю. Газы, выделяющиеся со дна Байкала и на его побережье // Природные газы СССР. Вып. 27б. Л.: Госхимтехиздат. 1933. С. 1–21.
  4. 4. Гранин Н.Г., Гранина Л.З. Газовые гидраты и выходы газов на Байкале // Геология и геофизика. 2002. Т. 43. № 7. С. 629–637.
  5. 5. Калинин В.Г. Зимний режим водохранилищ и его определяющие факторы // Географический вестник. 2012. № 1(20). С. 52–55.
  6. 6. Песчанский И.С. Ледоведение и ледотехника, 2-е изд., доп. и перераб. Л.: Гидрометеоиздат, 1967. 462 с.
  7. 7. Сазонов К.Е. Изучение физических свойств льда в России и СССР (конец XIX в. — 1940 г.). Плотность и пористость льда // Проблемы Арктики и Антарктики. 2023. Т. 69. № 4. С. 501–518.
  8. 8. Цуриков В.Л. Наблюдения над ледяным покровом Южного Байкала в 1934 г. // Труды Байкальской лимнологической станции. Т. IX. М.; Л.: Изд-во АН СССР, 1939. С. 23–44.
  9. 9. Bastviken D., Cole J., Pace M., Tranvik L. Methane emissions from lakes: Dependence of lake characteristics, two regional assessments, and a global estimate // Glob. Biogeochem. Cycles. 2004. V. 18. № 4. P. 1–12.
  10. 10. Bertilsson S., Burgin A., Carey C.C. et al. The under-ice microbiome of seasonally frozen lakes // Limnol. Oceanogr. 2013. V. 58. № 6. P. 1998–2012.
  11. 11. Boereboom T., Depoorter M., Coppens S., Tison J.-L. Gas properties of winter lake ice in Northern Sweden: implication for carbon gas release // Biogeosciences. 2012. V. 9. № 2. P. 827–838.
  12. 12. Bussmann I., Damm E., Schlüter M., Wessels M. Fate of methane bubbles released by pockmarks in Lake Constance // Biogeochemistry. 2012. V. 112. № 1. P. 613–623.
  13. 13. Carte A.E. Air Bubbles in Ice // Proc. Phys. Soc. 1961. V. 77. № 3. P. 757–768.
  14. 14. Deemer B.R., Harrison J.A., Li S., Beaulieu J.J., Del Sontro T., Barros N., Bezerra-Neto J.F., Powers S.M., dos Santos M.A., Vonk J.A. Greenhouse Gas Emissions from Reservoir Water Surfaces: A New Global Synthesis // BioScience. 2016. V. 66. № 11. P. 949–964.
  15. 15. Demarty M., Bastien J., Tremblay A. Carbon dioxide and methane annual emissions from two boreal reservoirs and nearby lakes in Quebec, Canada // Biogeosciences Discuss. 2009. V. 6. № 2. P. 2939 –2963.
  16. 16. Demarty M., Bastien J., Tremblay A. Annual follow-up of carbon dioxide and methane diffusive emissions from two boreal reservoirs and nearby lakes in Québec, Canada // Biogeosciences Discuss. 2010. V. 7. № 4. P. 5429–5461.
  17. 17. Demarty M., Bastien J., Tremblay A. Annual follow-up of gross diffusive carbon dioxide and methane emissions from a boreal reservoir and two nearby lakes in Quebec, Canada // Biogeosciences. 2011. V. 8. № 1. P. 41–53.
  18. 18. Demirbas A. Methane Gas Hydrate. London, UK: Springer, 2010. 186 p.
  19. 19. Denfeld B.A., Baulch H.M., del Giorgio P.A., Hampton S.E., Karlsson J. A synthesis of carbon dioxide and methane dynamics during the ice-covered period of northern lakes // Limnol. Oceanogr. Lett. 2018. V. 3. № 3. P. 117–131.
  20. 20. Duchemin É., Lucotte M., Canuel R., Soumis N. First assessment of methane and carbon dioxide emissions from shallow and deep zones of boreal reservoirs upon ice break‐up // Lakes Reserv.: Res. Manag. 2006. V. 11. № 1. P. 9–19.
  21. 21. Dück Y., Liu L., Lorke A., Ostrovsky I., Katsman R., Jokiel. C. A novel freeze corer for characterization of methane bubbles and assessment of coring disturbances // Limnol. Oceanogr. Methods. 2019. V. 17. № 5. P. 305–319.
  22. 22. Egorov A., Nigmatulin R., Rozhkov A. Temperature effects in deep-water hydrate foam // Heat Mass Transf. 2019. V. 55. № 12. P. 235–246.
  23. 23. Engram M., Anthony K., Sachs T., Kohnert K., Serafimovich A., Grosse G., Meyer F. Remote sensing northern lake methane ebullition // Nat. Clim. Change. 2020. V. 10. № 6. P. 511–517.
  24. 24. Engram M., Anthony K.W., Meyer F.J., Grosse G. Synthetic aperture radar (SAR) backscatter response from methane ebullition bubbles trapped by thermokarst lake ice // Can. J. Remote Sens. 2013. V. 38. № 6. P. 667–682.
  25. 25. Gorsky A.L., Lottig N.R., Stoy P.C., Desai A.R., Dugan H.A. The Importance of Spring Mixing in Evaluating Carbon Dioxide and Methane Flux From a Small North-Temperate Lake in Wisconsin, United States // J. Geophys. Res. Biogeosciences. 2021. V. 126. № 12. P. 1–13.
  26. 26. Granin N.G., Aslamov I.A., Kozlov V.V. et al. Methane hydrate emergence from Lake Baikal: direct observations, modelling, and hydrate footprints in seasonal ice cover // Sci. Rep. 2019. V. 9. № 1. P. 1–10.
  27. 27. Greene S., Walter Anthony K.M., Archer D., Sepulveda-Jauregui A., Martinez-Cruz K. Modeling the impediment of methane ebullition bubbles by seasonal lake ice // Biogeosciences. 2014. V. 11. № 23. P. 6791–6811.
  28. 28. Gudasz C., Bastviken D., Steger K., Premke K., Sobek S., Tranvik L.J. Temperature-controlled organic carbon mineralization in lake sediments // Nature. 2010. V. 466. № 7305. P. 478–481.
  29. 29. Hemmingsen E. Permeation of Gases through Ice // Tellus. 1959. V. 11. № 3. P. 355–359.
  30. 30. Hughes-Allen L., Bouchard F., Laurion I. et al. Season al. patterns in greenhouse gas emissions from thermokarst lakes in Central Yakutia (Eastern Siberia) // Limnol. Oceanogr. 2021. V. 66. № S1. P. S98–S116.
  31. 31. Jammet M., Crill P., Dengel S., Friborg T. Large methane emissions from a subarctic lake during spring thaw: Mechanisms and landscape significance // J. Geophys. Res. Biogeosci. 2015. V. 120. № 11. P. 2289–2305.
  32. 32. Jansen J., Thornton B.F., Jammet M.M., Wik M., Cortés A., Friborg T., MacIntyre S., Crill P.M. Climate-Sensitive Controls on Large Spring Emissions of CH4 and CO2 From Northern Lakes // J. Geophys. Res. Biogeosci. 2019. V. 124. № 7. P. 2379–2399.
  33. 33. Johnson M.S., Matthews E., Bastviken D., Deemer B., Du J., Genovese V. Spatiotemporal methane emission from global reservoirs // J. Geophys. Res. Biogeosci. 2021. V. 126. № 8. P. 1–19.
  34. 34. Jin Y., Chen X., Guan H., Zhao H., Yu R., Li Z., Xu S. Bubbles dominated the significant spatiotemporal variability and accumulation of methane concentrations in an ice-covered reservoir // Sci. Total. Environ. 2024. V. 918. P. 170362.
  35. 35. Kankaala P., Huotari J., Peltomaa E., Saloranta T., Ojala A. Methanotrophic activity in relation to methane efflux and total heterotrophic bacterial production in a stratified, humic, boreal lake // Limnol. Oceanogr. 2006. V. 51. № 2. P. 1195–1204.
  36. 36. Kankaala P., Taipale S., Nykänen H., Jones R.I. Oxidation, efflux, and isotopic fractionation of methane during autumnal turnover in a polyhumic, boreal lake // J. Geophys. Res. Biogeosci. 2007. V. 112. P. 1–7.
  37. 37. Karlsson J., Giesler R., Persson J., Lundin E. High emission of carbon dioxide and methane during ice thaw in high latitude lakes // Geophys. Res. Lett. 2013. V. 40. № 6. 1123–1127.
  38. 38. Kazantsev V.S., Krivenok L.A., Dvornikov Y.A. Preliminary data on the methane emission from lake seeps of the Western Siberia permafrost zone // IOP Conf. Ser. Earth Environ. Sci. 2020. V. 606. № 1. P. 012022.
  39. 39. Kida M., Khlystov O., Zemskaya T. et al. Coexistence of structure I and II gas hydrates in Lake Baikal suggesting gas sources from microbial and thermogenic origin // Geophys. Res. Lett. 2006. V 33. № 24. P. 1–4.
  40. 40. Krylov A.A., Khlystov O.M., Semenov P.B. et al. Sources of Hydrocarbon Gases in the Kedr Mud Volcano, Southern Basin of Lake Baikal: Results of Experimental Studies // Lithol. Miner. Resour. 2023. V. 58. № 6. P. 534–543.
  41. 41. Kuhlbusch T.A., Zepp R.G. Carbon trace gases in lake and beaver pond ice near Thompson, Manitoba, Canada // J. Geophys. Res. 1999. V. 104. № D22. P. 27693–27698.
  42. 42. Langenegger T., Vachon D., Donis D., McGinnis D.F. What the bubble knows: Lake methane dynamics revealed by sediment gas bubble composition // Limnol. Oceanogr. 2019. V. 64. № 4. P. 1526–1544.
  43. 43. Langer M., Westermann S., Walter Anthony K., Wischnewski K., Boike J. Frozen ponds: production and storage of methane during the Arctic winter in a lowland tundra landscape in northern Siberia, Lena River delta // Biogeosciences. 2015. V. 12. № 4. P. 977–990.
  44. 44. Laudon H., Sjöblom V., Buffam I., Seibert J., Mörth M. The role of catchment scale and landscape characteristics for runoff generation of boreal streams // J. Hydrol. 2007. V. 344. № 3. P. 198–209.
  45. 45. Leppäranta M. Freezing of lakes and the evolution of their ice cover. Berlin, Heidelberg: Springer, 2015. 301 p.
  46. 46. Li L., Xue B. Methane emissions from northern lakes under climate change: a review // SN Appl. Sci. 2021. V. 3. № 12. P. 1–12.
  47. 47. Lindgren P.R., Grosse G., Walter Anthony K.M., Meyer F.J. Detection and spatiotemporal analysis of methane ebullition on thermokarst lake ice using high-resolution optical aerial imagery // Biogeosciences. 2016. V 13. № 1. P. 27–44.
  48. 48. Lipp G., Körber Ch., Englich S., Hartmann U., Rau G. Investigation of the behavior of dissolved gases during freezing // Cryobiology. 1987. V. 24. № 6. P. 489–503.
  49. 49. Liu L., Wilkinson J., Koca K., Buchmann C., Lorke A. The role of sediment structure in gas bubble storage and release: Sediment Structure Affects Ebullition // J. Geophys. Res. Biogeosci. 2016. V. 121. № 7. P. 1992–2005.
  50. 50. López Bellido J., Peltomaa E., Ojala A. An urban boreal lake basin as a source of CO 2 and CH4 // Environ. Pollut. 2011. V. 159. № 6. P. 1649–1659.
  51. 51. MacFarling Meure C., Etheridge D., Trudinger C. et al. Law Dome CO 2, CH4 and N2O ice core records extended to 2000 years BP // Geophys. Res. Lett. 2006. V. 33. № 14. P. 1–4.
  52. 52. Marcek H.A.M., Lesack L.F.W., Orcutt B.N., Wheat C.G., Dallimore S.R., Geeves K., Lapham L.L. Continuous Dynamics of Dissolved Methane Over 2 Years and its Carbon Isotopes (δ13C, ∆14C) in a Small Arctic Lake in the Mackenzie Delta // J. Geophys. Res. Biogeosci. 2021. V. 126. № 3. P. 1–23.
  53. 53. Martinez-Cruz K., Sepulveda-Jauregui A., Walter Anthony K., Thalasso F. Geographic and seasonal variation of dissolved methane and aerobic methane oxidation in Alaskan lakes // Biogeosciences. 2015. V. 12. № 15. P. 4595–4606.
  54. 54. McGinnis D.F., Greinert J., Artemov Y., Beaubien S.E., Wüest A. Fate of rising methane bubbles in stratified waters: How much methane reaches the atmosphere? / J. Geophys. Res. Oceans. 2006. V. 111. № C9. P. 1–15.
  55. 55. Michmerhuizen C.M., Striegl R.G., McDonald M.E. Potential methane emission from north-temperate lakes following ice melt // Limnol. Oceanogr. 1996. V. 41. № 5. P. 985–991.
  56. 56. Morgunova I., Semenov P., Kursheva A. et al. Molecular Indicators of Sources and Biodegradation of Organic Matter in Sediments of Fluid Discharge Zones of Lake Baikal.// Geosciences. 2022. V. 12. № 2. P. 72.
  57. 57. Negandhi K., Laurion I., Whiticar M.J., Galand P.E., Xu X., Lovejoy C. Small Thaw Ponds: An Unaccounted Source of Methane in the Canadian High Arctic // PLoS ONE. 2013. V. 8. № 11. P. 1–9.
  58. 58. Phelps A.R., Peterson K.M., Jeffries M.O. Methane efflux from high-latitude lakes during spring ice melt // J. Geophys. Res. Atmos. 1998. V. 103. № D22. P. 29029–29036.
  59. 59. Pickrill R.A. Shallow seismic stratigraphy and pockmarks of a hydrothermally influenced lake, Lake Rotoiti, New Zealand // Sedimentology. 1993. V. 40. № 5. P. 813–828.
  60. 60. Pointner G., Bartsch A., Dvornikov Y.A., Kouraev A.V. Mapping potential signs of gas emissions in ice of Lake Neyto, Yamal, Russia, using synthetic aperture radar and multispectral remote sensing data // The Cryosphere. 2021. V. 15. № 4. P. 1907–1929.
  61. 61. Ricão Canelhas M., Denfeld B.A., Weyhenmeyer G.A., Bastviken D., Bertilsson S. Methane oxidation at the water-ice interface of an ice-covered lake // Limnol. Oceanogr. 2016. V. 61. № S1. P. S78–S90.
  62. 62. Rosentreter J.A., Borges A.V., Deemer B.R., Holgerson M.A., Liu S., Song C., Eyre B.D. Half of global methane emissions come from highly variable aquatic ecosystem sources // Nat. Geosci. 2021. V. 14. № 4. P. 225–230.
  63. 63. Saunois M., Martinez A., Poulter B. et al. Global Methane Budget 2000–2020 // Earth Syst. Sci. Data Discuss. [preprint]. 2024. P. 1–147.
  64. 64. Sepulveda-Jauregui A., Walter Anthony K.M., Martinez-Cruz K., Greene S., Thalasso F. Methane and carbon dioxide emissions from 40 lakes along a north–south latitudinal transect in Alaska // Biogeosciences. 2015. V. 12. № 11. P. 3197–3223.
  65. 65. Smith L.K., Lewis Jr.W.M. Seasonality of methane emissions from five lakes and associated wetlands of the Colorado Rockies // Glob. Biogeochem. Cycles. 1992. V. 6. № 4. P. 323–338.
  66. 66. Spangenberg I., Overduin P.P., Damm E. et al. Methane pathways in winter ice of a thermokarst lake–lagoon–coastal water transect in north Siberia // The Cryosphere. 2021. V. 15. № 3. P. 1607–1625.
  67. 67. Stern L.A., Circone S., Kirby S.H., Durham W.B. Anomalous Preservation of Pure Methane Hydrate at 1 atm // J. Phys. Chem. B. 2001. V. 105. № 9. P. 1756–1762.
  68. 68. Striegl R.G., Michmerhuizen C.M. Hydrologic influence on methane and carbon dioxide dynamics at two north-central Minnesota lakes // Limnol. Oceanogr. 1998. V. 43. № 7. P. 1519–1529.
  69. 69. Sundh I., Bastviken D., Tranvik L.J. Abundance, activity, and community structure of pelagic methane-oxidizing bacteria in temperate lakes // Appl. Environ. Microbiol. 2005. V. 71. № 11. P. 6746–6752.
  70. 70. Tang K.W., McGinnis D.F., Frindte K., Brüchert V., Grossart H.-P. Paradox reconsidered: Methane oversaturation in well-oxygenated lake waters // Limnol. Oceanogr. 2014. V. 59. № 1. P. 275–284.
  71. 71. Van Rensbergen P., De Batist M., Klerkx J. et al. Sublacustrine mud volcanoes and methane seeps caused by dissociation of gas hydrates in Lake Baikal // Geology. 2002. V. 30. № 7. P. 631–634.
  72. 72. Walter Anthony K.M., Anthony P. Constraining spatial variability of methane ebullition seeps in thermokarst lakes using point process models // J. Geophys. Res. Biogeosci. 2013. V. 118. № 3. P. 1015–1034.
  73. 73. Walter Anthony K.M., Vas D.A., Brosius L., Chapin III F.S., Zimov S.A., Zhuang Q. Estimating methane emissions from northern lakes using ice-bubble surveys // Limnol. Oceanogr. Methods. 2010. V. 8. № 11. P. 592–609.
  74. 74. Walter Anthony K.M., Anthony P., Grosse G., Chanton J. Geologic methane seeps along boundaries of Arctic permafrost thaw and melting glaciers // Nat. Geosci. 2012. V. 5. № 6. P. 419–426.
  75. 75. Walter Anthony K.M., Lindgren P., Hanke P. et al. Decadalscale hotspot methane ebullition within lakes following abrupt permafrost thaw // Environ. Res. Lett. 2021. V. 16. № 3. P 1–21.
  76. 76. Walter Anthony, K.M., Daanen R., Anthony P., Schneider von Deimling T., Ping C.-L., Chanton J.P., Grosse G. Methane emissions proportion al.to permafrost carbon thawed in Arctic lakes since the 1950s // Nat. Geosci. 2016. V. 9. № 9. P. 679–682.
  77. 77. Walter K.M., Chanton J.P., Chapin III F.S., Schuur E.a.G., Zimov S.A. Methane production and bubble emissions from arctic lakes: Isotopic implications for source pathways and ages // J. Geophys. Res. Biogeosci. 2008. V. 113. № G3. P. 1–16.
  78. 78. Walter K.M., Zimov S., Chanton J.P., Verbyla D., Chapin III. F.S. Methane Bubbling From Siberian Thaw Lakes as a Positive Feedback to Climate Warming // Nature. 2006. V. 443. № 7107. P. 71–75.
  79. 79. Wik M., Crill P.M., Bastviken D., Danielsson Å., Norback E. Bubbles trapped in arctic lake ice: Potential implications for methane emissions // J. Geophys. Res. Biogeosci. 2011. V. 116. № G3. P. 1–10.
  80. 80. Wik M., Varner R.K., Anthony K.W., MacIntyre S., Bastviken D. Climate-sensitive northern lakes and ponds are critical components of methane release // Nat. Geosci. 2016. V. 9. № 2. P. 99–105.
  81. 81. Zhao K., Tedford E.W., Zare M., Lawrence G.A. Impact of atmospheric pressure variations on methane ebullition and lake turbidity during ice-cover // Limnol. Oceanogr. Lett. 2021. V. 6. № 5. P. 253–261 https://gml.noaa.gov/ccgg/trends/global.html
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека