RAS Earth ScienceИзвестия Российской академии наук. Физика атмосферы и океана Izvestiya, Atmospheric and Oceanic Physics

  • ISSN (Print) 0002-3515
  • ISSN (Online) 3034-6487

INTENSIFICATION OF UPPER-TROSPHERIC CURRENTS DUE TO EKMAN FRICTION

PII
S3034648725060035-1
DOI
10.7868/S3034648725060035
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 61 / Issue number 6
Pages
751-757
Abstract
The dynamics of zonal quasi-geostrophic currents was studied within the framework of a two-level quasi-geostrophic model with bottom friction. It is shown that due to friction the flow velocity at the lower level drops to zero, while the velocity at the upper level increases. An analytical expression for the maximum flow velocity at the upper level is obtained, and the dependence of the amplification factor on the structure of the initial velocity disturbance is investigated. A similar result is obtained within the framework of a continuous surface geostrophic model using the long-wave approximation. An analytical solution is constructed that describes the transformation of the zonal flow into an intense upper-tropospheric flow. Thus, it is shown that Ekman friction is one of the important mechanisms that contribute to the intensification of currents at the upper level.
Keywords
гидродинамическая неустойчивость придонное трение инкремент нарастания верхнетропосферное течение
Date of publication
20.02.2026
Year of publication
2026
Number of purchasers
0
Views
13

References

  1. 1. Воробьев В. И. Струйные течения в высоких и умеренных широтах. Л.: Гидрометеоиздат, 1960. 234 с.
  2. 2. Воробьев В. И. Синотическая метеорология. Л.: Гидрометеоиздат, 1991. 616 с.
  3. 3. Должанский Ф. В. Основы геофизической гидродинамики. М.: Физматлит, 2011. 234 с.
  4. 4. Калашник М. В., Нерушев А. Ф., Иванагородский Р. В. Характерные масштабы и горизонтальная асимметрия струйных течений в атмосфере Земли // Изв. РАН. Физика атмосферы и океана. 2017. Т. 53. № 2. С. 179–187.
  5. 5. Калашник М. В. Экмановское трение и формирование верхнетропосферных зональных течений // Изв. РАН. Физика атмосферы и океана. 2020. Т. 56. № 5. С. 514–525.
  6. 6. Калашник М. В., Куранский М. В., Чхетишин О. Г. Бароклинная неустойчивость в геофизической гидродинамике // Успехи физических наук. 2022. Т. 192. № 10. С. 1110–1144.
  7. 7. Хаин А. П. Математическое моделирование тропических циклонов. Л.: Гидрометеоиздат, 1984. 247 с.
  8. 8. Kalashnik M. V. Long-wave instabilities in the SQG model with two boundaries // Geophysical and Astrophysical Fluid Dynamics. 2020. V. 115. № 4. P. 393–411. https://doi.org/10.1080/03091929.2020.1831483
  9. 9. Kalashnik M. V., Chkheitani O. G., Kurgansky M. V. Discrete SQG models with two boundaries and baroclinic instability of jet flows // Phys. Fluids. 2021. V. 33. 076608.
  10. 10. Pedlosky J. Geophysical Fluid Dynamics. New York: Springer, 1987. 710 p.
  11. 11. Phillips N. A. Energy transformation and meridional circulations associated with simple baroclinic waves in a two-level, quasi-geostrophic model // Tellus. 1954. V. 6. P. 273–283.
  12. 12. Vallis G. K. Atmospheric and Oceanic Fluid Dynamics. Cambridge University Press, 2006. 758 p.
QR
Translate

Indexing

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library