RAS Earth ScienceИзвестия Российской академии наук. Физика атмосферы и океана Izvestiya, Atmospheric and Oceanic Physics

  • ISSN (Print) 0002-3515
  • ISSN (Online) 3034-6487

On the influence of boundary conditions on the instability of geostrophic currents

PII
S0002351525020014-1
DOI
10.31857/S0002351525020014
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 61 / Issue number 2
Pages
123-132
Abstract
An analysis of the influence of boundary conditions on the instability of a geostrophic zonal current of finite transverse scale with a vertical parabolic velocity profile of a general form in a vertically limited layer has been carried out. The model is based on the potential vortex equation in the quasi-geostrophic approximation, taking into account the vertical diffusion of mass and momentum. The equation and boundary conditions were reduced to a spectral eigenvalue problem of the Orr–Sommerfeld type. A high-precision analytical-numerical method was used to calculate eigenfunctions and eigenvalues. Two types of conditions at the horizontal boundaries of the layer were considered: the equality of vertical velocity disturbances and buoyancy fluxes to zero (problem I); equality of vertical velocity disturbances and horizontal velocity disturbances to zero (problem II). It is found that the boundary conditions of problem II, which include no-slip conditions, contribute to the stabilization of long-wave unstable disturbances and narrow the range of unstable short-wave disturbances. It is noted, however, that all types of current instability obtained by solving problem I, such as baroclinic instability, instability of the critical layer, as well as new instability, characterized by a phase velocity exceeding the maximum current velocity, also arise when using no-slip boundary conditions, but in a narrower range of changes in the physical parameters of the original equation.
Keywords
неустойчивость океанских геострофических течений диффузия импульса и массы задача на собственные значения
Date of publication
14.09.2025
Year of publication
2025
Number of purchasers
0
Views
13

References

  1. 1. Калашник М.В. К теории симметричной и несимметричной устойчивости зональных геострофических течений // Изв. РАН. Физика атмосферы и океана. 2001. Т. 37. № 3. С. 418–421.
  2. 2. Кузьмина Н.П., Скороходов С.Л., Журбас Н.В., Лыжков Д.А. О неустойчивости геострофического течения с линейным вертикальным сдвигом ско-рости на масштабах интрузионного расслоения // Изв. РАН. Физика атмосферы и океана. 2018. Т. 54. № 1. С. 54–63.
  3. 3. Кузьмина Н.П., Скороходов С.Л., Журбас Н.В., Лыжков Д.А. Описание возмущений океанских геострофических течений с линейным вертикальным сдвигом скорости с учетом трения и диффузии плавучести // Изв. РАН. Физика атмосферы и океана. 2019. Т. 55. № 2. С. 73–85.
  4. 4. Кузьмина Н.П., Скороходов С.Л., Журбас Н.В., Лыжков Д.А. О влиянии трения и диффузии плавучести на динамику геострофических океанских течений с линейным вертикальным профилем скорости // Изв. РАН. Физика атмосферы и океана. 2020. Т. 56. № 6. С. 676–678.
  5. 5. Кузьмина Н.П., Скороходов С.Л., Журбас Н.В., Лыжков Д.А. О видах неустойчивости геострофического течения с вертикальным параболическим профилем скорости // Изв. РАН. Физика атмосферы и океана. 2023. Т. 59. № 2. С. 230–241.
  6. 6. Скороходов С.Л. Численный анализ спектра задачи Орра–Зоммерфельда // Ж. вычисл. матем. и матем. физ. 2007 а. Т. 47. № 10. С. 1672–1691.
  7. 7. Скороходов С.Л. Точки ветвления собственных значений оператора Орра–Зоммерфельда // Докл. РАН. 2007 б. Т. 416. № 5. С. 600–605.
  8. 8. Скороходов С.Л., Кузьмина Н.П. Аналитико-численный метод решения задачи типа Орра–Зоммерфельда для анализа неустойчивости течений в океане // Ж. вычисл. матем. и матем. физ. 2018. Т. 58. № 6. С. 976–992.
  9. 9. Скороходов С.Л., Кузьмина Н.П. Спектральный анализ модельных течений типа Куэтта применительно к океану // Ж. вычисл. матем. и матем. физ. 2019. T. 59. № 5. С. 106–127.
  10. 10. Скороходов С.Л., Кузьмина Н.П. Спектральный анализ малых возмущений геострофических течений с параболическим вертикальным профилем скорости применительно к океану // Ж. вычисл. матем. и матем. физ. 2021. Т. 61. № 12. C. 2010–2023.
  11. 11. Скороходов С.Л., Кузьмина Н.П. Аналитико-численный метод для анализа малых возмущений океанских геострофических течений с параболическим вертикальным профилем скорости общего вида // Ж. вычисл. матем. и матем. физ. 2022. T. 62. № 12. C. 2043–2053.
  12. 12. Педлоски Дж. Геофизическая гидродинамика / Под редакцией Каменковича В.М., Монина А.С. М.: Мир, 1984. 812 с.
  13. 13. Шакина Н. П. Лекции по динамической метеорологии. М.: Триада ЛТД, 2013. 160 с.
  14. 14. Cushman-Roisin B. Introduction to the Geophysical Fluid Dynamics. New Jersey 07632, Englewood Cliffs: Prentice Hall, 1994. 320 p.
  15. 15. Eady E.T. Long waves and cyclone waves // Tellus. 1949. V. 1. № 3. P. 33–52.
  16. 16. Kuzmina N.P. Generation of large-scale intrusions at baroclinic fronts: an analytical consideration with a reference to the Arctic Ocean // Ocean Sci. 2016. V. 12. P. 1269–1277. doi: 10.5194/os-12-1269-2016.
  17. 17. Lin C.C. The Theory of Hydrodynamic Stability. Cambridge University Press, 1955. 155 p.
  18. 18. McWilliams James C. Statistical properties of decaying geostrophic turbulence // J. Fluid Mech. 1989. V. 198. P. 199–230.
  19. 19. Miles J.W. Effect of Diffusion on Baroclinic Instability of the Zonal Wind // J. Atmos. Sci. 1965. V. 22. P. 146–151.
  20. 20. Orszag S.A. Accurate solution of the Orr–Sommerfeld equation // J. Fluid Mech. 1971. V. 50. № 4. P. 689–703.
  21. 21. Reddy S.C., Schmid P.J., Henningson D.S. Pseudospectra of the Orr–Sommerfeld Operator // SIAM J. Appl. Math. 1993. V. 53. № 1. P. 15–47.
  22. 22. Shkalikov A.A. Spectral portraits of the Orr–Sommerfeld operator with large Reynolds numbers // J. Math. Sci. 2004. V. 124. № 6. P. 5417–5441.
  23. 23. Skorokhodov S.L., Kuzmina N.P. 2024, Analytical-Numerical Method for Solving the Spectral Problem in a Model of Geostrophic Oceanic Currents // Comput. Math. Math. Phys. 2024. V. 64. № 6. P. 1240–1253.
  24. 24. Stern M.E. Ocean circulation physics. Academic press, 1975. 246 p.
  25. 25. Trefethen L.N. Pseudospectra of linear operators // SIAM Rev. 1997. V. 39. № 3. P. 383–406.
  26. 26. Zhurbas N.V. On the eigenvalue spectra for a model problem describing formation of the large-scale intrusions in the Arctic basin // Fundament. Applied Hydrophys. 2018. V. 11. № 1. P. 40–45.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library