- PII
- S3034648725060082-1
- DOI
- 10.7868/S3034648725060082
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 61 / Issue number 6
- Pages
- 815-832
- Abstract
- Arctic temperatures have in recent decades risen faster than the global average, threatening the large carbon pools locked in the Arctic permafrost. Atmospheric composition monitoring has become a priority, but it is extremely difficult to set up in such remote regions, especially over the Arctic seas. These observations are limited by the length of the navigation season and the logistical difficulties of sampling and measuring atmospheric composition. In this study, atmospheric CH concentrations were measured over 28 days in the fall and early winter of 2023. The main study areas were the Barents Sea and the southern regions of the Kara Sea, with special attention paid to the bays of the western coast of the Novaya Zemlya archipelago. During the study period, atmospheric CH concentrations ranged from 2.018 to 2.122 ppm, with an average value of 2.039 ± 0.013 ppm. Variations in atmospheric CH in the surface layer were mainly due to meteorological conditions, as well as the geographical location of the vessel and the time of measurements. High-resolution coupled measurements of marine and atmospheric CH data are critical for understanding the scale of methane emissions at the ocean-atmosphere interface, especially in winter when the mixing layer increases, convection intensifies, and more methane from the water column can enter the atmosphere. In addition, our data can be used as input parameters for climate models.
- Keywords
- Арктика метан в атмосфере эмиссия метана климатически активные газы морские измерения
- Date of publication
- 20.02.2026
- Year of publication
- 2026
- Number of purchasers
- 0
- Views
- 13
References
- 1. Берлянд М.Е. Современные проблемы атмосферной диффузии и загрязнения атмосферы. Л.: Гидрометеоиздат, 1975. 448 с.
- 2. Климатические характеристики условий распространения примесей в атмосфере: справочное пособие / Под ред. Э.Ю. Безуглой, М.Е. Берлянда. Л.: ГМИ, 1983. 328 с.
- 3. Кравчишина М.Д., Клювиткин А.А., Новигатский А.Н. и др. 89-й рейс (1-й этап) научно-исследовательского судна «Академик Мстислав Келдыш»: климатический эксперимент во взаимодействии с самолетом-лабораторией Ту-134 «Оптик» в Карском море // Океанология. 2023. Т. 63. № 3. С. 492–495. https://doi.org/10.31857/S0030157423030073
- 4. Никифоров С.Л., Сорокшин Н.О., Ананьев Р.А., Дмитриевский Н.Н., Мороз Е.А., Кокин О.В. Исследования в Баренцевом и Карском морях в 52-м рейсе НИС «Академик Николай Страхов» // Океанология. 2022. Т. 62. № 3. С. 499–501.
- 5. Особенности потоков метана в западной и восточной Арктике: обзор. Часть I // Геосистемы переходных зон. 2020. Т. 4. № 1. С. 4–25. https://doi.org/10.30730/2541-8912.2020.4.1.004-025
- 6. Панкратова Н.В., Беликов И.Б., Скорогой А.Н., Белоусов В.А., Муравья В.О., Филип М.В., Березина Е.В., Новигатский А.Н. Концентрация метана и значения δС в метане над Арктическими морями летом и осенью 2020 г. // Океанология. 2022. Т. 62. № 6. С. 869–877. https://doi.org/10.31857/S0030157422060107
- 7. Скороход А.Н., Панкратова Н.В., Беликов И.Б. и др. Атмосферный метан и его изотопный состав над морями российской Арктики по результатам судовых измерений летом и осенью 2015 года // Доклады академии наук. 2016. Т. 470. № 5. С. 580–584. https://doi.org/10.7868/S0869565216290247
- 8. Шакиров Р.Б., Мау С., Мишукова Г.Н., Обжиров А.Н., Шакирова М.В., Мишукова О.В., Юрганов Л.Н., Лейфер А., Вабаккенушмана С. Признаки ускорения возрастания концентрации метана в атмосфере после 2014 года: спутниковые данные для Арктики // Современные проблемы дистанционного зондирования Земли из космоса. 2017. Т. 14. № 5. С. 248–258. https://doi.org/10.21046/2070-7401-2017-14-5-248-258
- 9. Andreassen K., Hubbard A., Winsborrow M. Massive blow-out craters formed by hydrate-controlled methane expulsion from the Arctic seafloor // Science. 2017. V. 356. № 6341. P. 948–953. https://doi.org/10.1126/science.aal4500
- 10. Bloom A.A., Bowman K.W., Lee M., Turner A.J., Schroeder R., Worden J.R., Weidner R., McDonald K.C., Jacob D.J. A global wetland methane emissions and uncertainty dataset for atmospheric chemical transport models (WetCHARTs version 1.0) // Geos. Model Development. 2017. V. 10. P. 2141–2156. https://doi.org/10.5194/gmd-10-2141-2017
- 11. Bukhanov B., Chuvilin E., Zinnav M., Shakhova N., Spivak E., Dudarev O., Osadchiev A., Spasennykh M., Semiletov I. In situ bottom sediment temperatures in the Siberian Arctic seas: current state of subsea permafrost in the Kara sea vs Laptev and East Siberian seas // Mar Petrol Geol. 2023. V. 157. 106467. https://doi.org/10.1016/j.marpetgeo.2023.106467
- 12. Canadell J.G., Monteiro P.M.S., Costa M.H. et al. Global Carbon and other Biogeochemical Cycles and Feedbacks // Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change / Eds. V. Masson-Delmotte, P. Zhai, A. Pirani et al. Cambridge: Cambridge University Press, 2021. P. 673–816. https://doi.org/10.1017/9781009157896.007
- 13. Crippa M., Guizzardi D., Pagani F., Schiavina M., Melchiorri M., Pisoni E., Graziosi F., Muntean M., Maes J., Dijkstra L., Van Damme M., Clarisse L., Coheur P. Insights into the spatial distribution of global, national, and subnational greenhouse gas emissions in the Emissions Database for Global Atmospheric Research (EDGAR v8.0) // Earth Syst. Sci. Data. 2024. V. 16. P. 2811–2830. https://doi.org/10.5194/essd-16-2811-2024
- 14. Erminan M., Myhre G., Highwood E.J., Shine K.P. Radiative forcing of carbon dioxide, methane and nitrous oxide: A significant revision of the methane radiative forcing // Geophys. Res. Lett. 2016. V. 43. № 24. P. 12614–12623. https://doi.org/10.1002/2016GL071930
- 15. France J.L., Cain M., Fisher R.E. et al. Measurements of δC in CH and using particle dispersion modeling to characterize sources of Arctic methane within an air mass // J. Geophys. Res. 2016. V. 121. № 23. P. 14257–14270. https://doi.org/10.1002/2016jd026006
- 16. Gifford F.A., Barr S., Malone R.C., Mroz E.J. Tropospheric relative diffusion to hemispheric scales // Atm. Environ. 1988. V. 22. № 9. P. 1871–1879.
- 17. Haagenson P.L., Gao K., Kuo Y. Evaluation of Meteorological Analyses, Simulations, and Long-Range Transport Calculations Using ANATEX Surface Tracer Data // J. Appl. Meteor. Climatol. 1990. V. 29. P. 1268–1283. https://doi.org/10.1175/1520-0450 (1990)029%3C1268:EOMASA%3E2.0.CO;2
- 18. Haagenson P.L., Kuo Y., Skrvanic M., Seaman N.L. Tracer Verification of Trajectory Models // J. Appl. Meteor. Climatol. 1987. V. 26. P. 410–426.
- 19. Hersbach H., Bell B., Berrisford P., Biavati G., Hordnyi A., Muñoz Sabater J., Nicolas J., Peubey C., Radu R., Rozum I., Schepers D., Simmons A., Soci C., Dee D., Thépaut J.-N. ERA5 hourly data on pressure levels from 1940 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). 2023. URL: https://doi.org/10.24381/cds.bd0915c6 (дата обращения: 31.01.2025)
- 20. Jakobsson M. Hypsometry and volume of the Arctic Ocean and its constituent seas // G-cubed. 2002. V. 3. № 5. P. 1–18. https://doi.org/10.1029/2001GC000302
- 21. Judd A.G. Natural seabed seeps as sources of atmospheric methane // Environ. Geol. 2004. V. 46. P. 988–996.
- 22. Kravchishina M., Klyuvitkin A., Novigatskii A. et al. Cruise 93 of the R/V Akademik Mstislav Keldysh: Geosystems of the Western Eurasian Arctic Shelves in the Season of Active Autumn–Winter Convection and Polar Night // Oceanology. 2024. V. 64. P. 644–646. https://doi.org/10.1134/S0001437024700322
- 23. Kvenvolden K.A. Methane hydrate – A major reservoir of carbon in the shallow geosphere? // Chem. Geol. 1988. V. 71. P. 41–51. https://doi.org/10.1016/0009-2541 (88)90104-0
- 24. Lan X., Mund J.W., Crowell A.M., Thoning K.W., Moglia E., Madronich M., Baugh K., Petron G., Crowell M.J., Neff D., Wolter S., Mefford T., DeVogel S. Atmospheric Methane Dry Air Mole Fractions (1983–2023) from the NOAA GML Carbon Cycle Cooperative Global Air Sampling Network. 2024a. Version: 2024-07-30. https://doi.org/10.15138/VNCZ-M766
- 25. Lan X., Thoning K.W., Dugokencky E.J. Trends in globally-averaged CH, NO, and SF determined from NOAA Global Monitoring Laboratory measurements. Version 2024–10. 2024b. https://doi.org/10.15138/P8XG-AA10 (accessed 13 January 2025).
- 26. Malakhova V.V., Eliseev A.V. Subsea permafrost and associated methane hydrate stability zone: how long can they survive in the future? // Theor. Appl. Climatol. 2024. V. 155. P. 3329–3346. https://doi.org/10.1007/s00704-023-04804-7
- 27. Mau S., Römer M., Torres M.E., Bussmann I., Pape T., Damn E., Geprägs P., Wintersteller P., Hsu C.-W., Loher M., Bohrmann G. Widespread methane seepage along the continental margin off Svalbard – from Bjørnøya to Kongsfjorden // Sci. Rep. 2017. V. 7. 42997. https://doi.org/10.1038/srep42997
- 28. Monin A.S. Turbulent Diffusion in the Surface Layer Under Stable Stratification // Advances in Geophysics. 1959. V. 6. P. 429–434.
- 29. Narbaud C., Paris J.-D., Wittig S., Berchet A., Saunois M., Nédélec Ph., Belan B.D., Arshinov M.Yu., Belan S.B., Davydov D., Fofonov A., Kozlov A. Disentangling methane and carbon dioxide sources and transport across the Russian Arctic from aircraft measurements // Atmos. Chem. Phys. 2023. V. 23. P. 2293–2314. https://doi.org/10.5194/acp-23-2293-2023
- 30. Pankratova N., Skorokhod A., Belikov I. et al. Ship-Borne Observations of Atmospheric CH and δC Isotope Signature in Methane over Arctic Seas in Summer and Autumn 2021 // Atmosphere. 2022. V. 13. № 3. 458. https://doi.org/10.3390/atmos13030458
- 31. Platt S.M., Eckhardt S., Ferre B., Fisher R.E., Hermansen O., Jansson P., Lowry D., Nisbet E.G., Piso I., Schmidbauer N., Silyakova A., Stohl A., Svendby T.M., Vadakkepuliyambatta S., Mienert J., Lund Myhre C. Methane at Svalbard and over the European Arctic Ocean // Atmos. Chem. Phys. 2018. V. 18. P. 17207–17224. https://doi.org/10.5194/acp-18-17207-2018
- 32. Prather M.J., Holmes C.D., and Hsu J. Reactive greenhouse gas scenarios: Systematic exploration of uncertainties and the role of atmospheric chemistry // Geophys. Res. Lett. 2012. V. 39. L09803. https://doi.org/10.1029/2012GL051440
- 33. Romanovskii N.N., Hubberten H.-W. Results of permafrost modelling of the lowlands and shelf of the Laptev Sea Region, Russia // Permafrost and Periglacial Processes. 2001. V. 12. № 2. P. 191–202. https://doi.org/10.1002/ppp.387
- 34. Romanovskii N.N., Hubberten H.-W., Gavrilov A.V., Tumskoy V.E., Kholodov A.I. Permafrost of the east Siberian Arctic shelf and coastal lowlands // Quat. Sci. Rev. 2004. V. 23. P. 1359–1369. https://doi.org/10.1016/j.quascirev.2003.12.014
- 35. Saunois M., Stavert A.R., Poulter B. et al. The global methane budget 2000–2017 // Earth System Science Data. 2020. V. 12. № 3. P. 1561–1623. https://doi.org/10.5194/essd-12-1561-2020
- 36. Scriven R.A., Fisher B.E. The long range transport of airborne material and its removal by deposition and washout — II. The effect of turbulent diffusion // Atmos. Environ. 1975. V. 9. № 1. P. 59–69.
- 37. Shakhova N., Semiletov I., Chuvilin E. Understanding the permafrost–hydrate system and associated methane releases in the East Siberian Arctic shelf // Geosciences (Basel). 2019. V. 9. № 6. P. 251. https://doi.org/10.3390/geosciences9060251
- 38. Shakhova N., Semiletov I., Salyuk A., Yusupov V., Kosmach D., Gustafsson Ö. Extensive Methane Venting to the Atmosphere from Sediments of the East Siberian Arctic Shelf // Science. 2010. V. 327. № 5970. P. 1246–1250. https://doi.org/10.1126/science.1182221
- 39. Stevenson D.S., Zhao A., Naik V., O’Connor F.M., Tilmes S., Zeng G., Murray L.T., Collins W.J., Griffiths P.T., Shim S., Horowitz L.W., Sentman L.T., Emmons L. Trends in global tropospheric hydroxyl radical and methane lifetime since 1850 from AerChemMIP // Atmos. Chem. Phys. 2020. V. 20. P. 12905–12920. https://doi.org/10.5194/acp-20-12905-2020
- 40. Stohl A., Forster C., Eckhardt S., Spichtinger N., Huntrieser H., Heland J., Schlager H., Wilhelm S., Arnold F., Cooper O. A backward modeling study of intercontinental pollution transport using aircraft measurements // J. Geophys. Res. 2003. V. 108. № D12. 4370. https://doi.org/10.1029/2002JD002862
- 41. Tarnocai C., Canadell J.G., Schuur E.A.G., Kuhry P., Mazhitova G., Zimov S. Soil organic carbon pools in the northern circumpolar permafrost region // Glob. Biogeochem. Cycles. 2009. V. 23. № 2. GB2023. https://doi.org/10.1029/2008GB003327
- 42. Vasileva A.V., Moiseenko K.B., Mayer J.-C., Jürgens N., Panov A., Heimann M., Andreae M.O. Assessment of the regional atmospheric impact of wildfire emissions based on CO observations at the ZOTTO tall tower station in central Siberia // J. Geophys. Res. 2011. V. 116. D07301. https://doi.org/10.1029/2010JD014571
- 43. Vogt J., Risk D., Bourlon E., Azetsu-Scott K., Edinger E.N., Sherwood O.A. Sea-air methane flux estimates derived from marine surface observations and instantaneous atmospheric measurements in the northern Labrador Sea and Baffin Bay // Biogeosciences. 2023. V. 20. P. 1773–1787. https://doi.org/10.5194/bg-20-1773-2023
- 44. Ward R.H., Sweeney C., Miller J.B. et al. Increasing methane emissions and widespread cold-season release from high-Arctic regions detected through atmospheric measurements // Journal of Geophysical Research: Atmospheres. 2024. V. 129. e2024JD040766. https://doi.org/10.1029/2024JD040766
- 45. Weber T., Wiseman N.A., Kock A. Global ocean methane emissions dominated by shallow coastal waters // Nat. Commun. 2019. V. 10. № 1. 4584. https://doi.org/10.1038/s41467-019-12541-7
- 46. Workman E., Fisher R.E., France J.L. et al. Methane emissions from seabed to atmosphere in polar oceans revealed by direct methane flux measurements // J. Geophys. Res. 2024. V. 129. e2023JD040632.
- 47. Yamada T., Bunker S. Development of a Nested Grid, Second Moment Turbulence Closure Model and Application to the 1982 ASCOT Brush Creek Data Simulation // J. Appl. Met. Climatol. 1988. V. 27. P. 562–578.
- 48. Yurganov L., Carroll D., Pnyushkov A. et al. Ocean stratification and sea-ice cover in Barents and Kara seas modulate sea-air methane flux: satellite data // Adv. Polar Sci. 2021. V. 32. № 2. P. 118–138. https://doi.org/10.13679/j.advps.2021.0006
- 49. Zona D., Gioli B., Commane R. et al. Cold season emissions dominate the Arctic tundra methane budget // Proceedings of the National Academy of Sciences. 2016. V. 113. № 1. P. 40–45. https://doi.org/10.1073/pnas.1516017113