RAS Earth ScienceИзвестия Российской академии наук. Физика атмосферы и океана Izvestiya, Atmospheric and Oceanic Physics

  • ISSN (Print) 0002-3515
  • ISSN (Online) 3034-6487

ON EDDY HEAT FLUXES AND ENTROPY PRODUCTION IN THE JET FLOW REGION AND ON THE EARTH'S SURFACE IN THE CLIMATE MODEL INM RAS

PII
S30346487S0002351525030054-1
DOI
10.7868/S3034648725030054
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 61 / Issue number 3
Pages
340-351
Abstract
This paper discusses some results of the study of eddy heat fluxes in the vicinity of a subtropical jet stream. Many large-scale dynamical phenomena in the Earth's atmosphere are associated with Rossby wave propagation and collapse processes. Here we focus on regions of counter-gradient eddy heat fluxes in the region of the subtropical jet stream in the Northern Hemisphere associated with Rossby wave overturning. In these regions, we observe meridional energy transfer on the northern flank of the jet stream in the equatorial direction from the ERA-5 reanalysis data and simulation data with the INM-CM4-8 climate model of the G.I. Marchuk Institute of Computational Mathematics of the Russian Academy of Sciences. The entropy production due to horizontal heat transfer becomes negative, since heat is transferred against the temperature gradient, but this is not a violation of the second law of thermodynamics, since the main part of entropy production occurs due to the processes of vertical heat transfer, such as convection, and other irreversible processes. Entropy production is sensitive to land cover, the entropy balance being most related to radiation at the surface. Quantifying the thermodynamic balance of entropy and entropy production is a useful metric for evaluating the interactions of the atmosphere-surface system. Some estimates of entropy production by the surface are presented in this paper. The traditional approach to studying the climate system focuses on the dynamic mechanisms and physical processes responsible for the conversion of energy from one form to another, but an approach based on analyzing the entropy balance of the climate system and especially entropy production is also important.
Keywords
турбулентность обрушение волн Россби струйные течения вихревые потоки тепла моделирование климата баланс и производство энтропии
Date of publication
01.03.2025
Year of publication
2025
Number of purchasers
0
Views
51

References

  1. 1. Крупчатников В.Н., Гочаков А.В., Антохина О.Ю. Исследование особенностей вихревых потоков импульса и тепла в области струйных течений // Сб. тр. СибНИГМИ, 2023. Вып. 108. С. 5–16. https://doi.org/10.55235/0320359X_2023_108_5
  2. 2. Крупчатников В.Н., Курбаткин Г.П. Моделирование крупномасштабной динамики атмосферы. Численные методы. Новосибирск: ВЦ СО АН СССР, 1991. 169 с.
  3. 3. Марчук Г.И., Дымников В.П., Курбаткин Г.П., Саркисян А.С. Программа “Разрезы” и мониторинг Мирового океана // Метеорология и гидрология. 1984. № 8. C. 9–17.
  4. 4. Программа исследования атмосферы и океана в целях изучения короткопериодных изменений климата (программа «Разрезы»). / Под ред. Г.И. Марчука // Итоги науки и техники. Атмосфера, океан, космос— программа “Разрезы”. 1981. T. 1. 60 с.
  5. 5. Barnes E.A., Hartmann D.L. Detection of Rossby wave breaking and its response to shifts of the midlatitude jet with climate change // J. Geophys. Res. Atm. 2012. V. 117. №. D9. https://doi.org/10.1029/2012JD017469
  6. 6. Birner T., Thompson D.W., Shepherd T.G. Up-gradient eddy fluxes of potential vorticity near the subtropical jet // Geophys. Res. Let. 2013. V. 40. P. 5988–5993.
  7. 7. Brunsell N.A., Schymanski S.J., Kleidon A. Quantifying the thermodynamic entropy budget of the land surface: is this useful? // Earth System Dynamics. 2011. V. 2(1) P. 87–103. https://doi.org/10.5194/esd-2-87-2011
  8. 8. Gassmann A., Herzog H.-J. How is local material entropy production represented in a numerical model? // Quarterly Journal of the Royal Meteorological Society. 2015. V. 141. P. 854–869.
  9. 9. Gassmann A. Entropy production due to subgrid-scale thermal fluxes with application to breaking gravity waves // Q.J.R. Meteorol. Soc. 2018. V. 144. P. 499–510. URL: https://onlinelibrary.wiley.com/doi/10.1002/qj.3221
  10. 10. Gibbins G., Haigh, J.D. Entropy Production Rates of the Climate // J. Atmos. Sci. 2020. V. 77. P. 3551–3566.
  11. 11. Gochakov A.V., Antokhina O.Yu., Krupchatnikov V.N., Martynova Yu.V. Long-term Variability of Rossby Wave Breaking in the Subtropical Jet Stream Area // UNKsian Meteorology and Hydrology. 2022. V. 47. № 2. P. 79–88.
  12. 12. Golitsyn G.S., Mokhov I.I. Stability and external properties of climate models // Atmos. Oceanic Phys. 1978. V. 14. P. 271–277.
  13. 13. Goody R. Sources and sinks of climate entropy // Quarterly Journal of the Royal Meteorological Society. 2000. V. 126. P. 1953–1970.
  14. 14. Held I.M., Hou A.Y. Nonlinear axially symmetric circulations in a nearly inviscid atmosphere // J. Atmos. Sci. 1980. V. 37. P. 515–533. https://doi.org/10.1175/1520-04690372.0.CO2
  15. 15. Holland W.R., Rhines, P.B. An example of eddy-induced ocean circulation // J. of Physical Oceanography. 1980. V. 10. P. 1010–1031.
  16. 16. Illari L., Marshall J.C. On the interpretation of eddy fluxes during a blocking episode // J. Atmos. Sci. 1983. V. 40. P. 2232−2242.
  17. 17. Kleidon A., Fraedrich K., Kirk E., Lunkeit F. Maximum entropy production and the strUNKth of boundary layer exchange in an atmospheric general circulation model // Geophysical Research Letters. 2006. V. 33. https://doi.org/10.1029/2005GL025373
  18. 18. Kleidon A., Lorenz R. Non-equilibrium thermodynamics and the production of entropy, Understanding Complex Systems, Springer, Berlin, 2005.
  19. 19. Kleidon A. Optimized stomatal conductance of vegetated land surfaces and its effects on simulated productivity and climate // Geophys. Res. Lett. V. 31. P. 1–4. https://doi.org/10.1029/2004GL020769, 2004.
  20. 20. Kleidon A., Schymanski S. Thermodynamics and optimality of the water budget on land: a review // Geophys. Res. Lett. V. 35. V. 1–6. https://doi.org/10.1029/2008GL035393, 2008.
  21. 21. Krupchatnikov V.N., Borovko I.V. Rossby wave breaking and blocking events associated with some atmospheric circulation regimes in the Northern Hemisphere based on a climate system model (PlaSim-ICMMG-1.0) // IOP Conf. Ser.: Earth Environ. Sci. 2020. V. 611. P. 012015. https://doi.org/10.1088/1755-1315/611/1/012015.
  22. 22. Lau N.C., Wallace J.M. On the Distribution of Horizontal Transports by Transient Eddies in the Northern Hemisphere Wintertime Circulation // J. Atmos. Sci. 1979. V. 36. P. 1844–1861.
  23. 23. Lucarini V., Pascale S. Entropy production and coarse graining of the climate fields in a general circulation model // Climate Dynamics. 2014. V. 43 (3-4). P. 981–1000.
  24. 24. Lupo A., Jensen A., Mokhov I., Timazhev A., Eichler T., Efe B. Changes in Global Blocking Character in Recent Decades // Atmosphere. 2019. V. 10. № 2. P. 92. https://doi.org/10.3390/atmos10020092
  25. 25. McIntyre M.E., Palmer T.N. Breaking planetary waves in the stratosphere // Nature. 1983. V. 305. P. 593–600.
  26. 26. Murakami T. Stratospheric Wind Temperature and Isobaric Height Conditions During the IGY Period. Part I. Report № 5. Planetary Circulation Project, Dept. of Meteor., Mass. Inst. Tech. 1962. P. 1–213.
  27. 27. Paltridge G.W. Global dynamics and climate-a system of minimum entropy exchange, Quarterly // J. of the Royal Meteorological Society 1975. V. 101. P. 475–484.
  28. 28. Peixoto J. P., Oort A. H., Almeida M. De, Tome A. Entropy budget of the atmosphere // J. Geophys. Res. Atmos. 1991. V. 96 (D6). 10 981— 10 988.
  29. 29. PUNK L. A simple numerical experiment concerning the general circulation in the lower stratosphere //Pure and Applied Geophysics V. 61. 1965. P. 191–218. https://doi.org/10.1007/BF00875777
  30. 30. Salmon R., Held I.M., Fields J., Thiffeault J.L. The General circulation of the atmosphere: 2000 program in Geophysical Fluid Dynamics. Woods Hole Oceanographic Institution. 2001. https://doi.org/10.1575/1912/15
  31. 31. Thompson D.W.J., Birner T. On the linkages between the tropospheric isentropic slope and eddy fluxes of heat during northern hemisphere winter // J. Atmos. Sci. 2012. V. 69. P. 1811–1823.
  32. 32. Thorncroft C.D., Hoskins B.J., McIntyre M.E. Two paradigms of baroclinic-wave life-cycle behavior // Quarterly Journal of the Royal Meteorological Society. 1993. V. 119 (509). P. 17–55. https://doi.org/10.1002/qj.49711950903
  33. 33. Wallace J.M. Trajectory slopes, counter gradient heat fluxes and mixing by lower stratospheric waves // J. Atmos. Sci. 1978. V. 35 P. 554–558.
  34. 34. White R.M. The Counter-Gradient Flux of Sensible Heat in the Lower Stratosphere // Tellus. 1954. V. 6. № 2. P. 177–179. https://doi.org/10.3402/tellusa.v6i2.8724
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library